留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Gram-Schmidt回归及在刀具磨损预报中的应用

王惠文 陈梅玲 Gilbert Saporta

王惠文, 陈梅玲, Gilbert Saporta等 . Gram-Schmidt回归及在刀具磨损预报中的应用[J]. 北京航空航天大学学报, 2008, 34(06): 729-733.
引用本文: 王惠文, 陈梅玲, Gilbert Saporta等 . Gram-Schmidt回归及在刀具磨损预报中的应用[J]. 北京航空航天大学学报, 2008, 34(06): 729-733.
Wang Huiwen, Chen Meiling, Gilbert Saportaet al. Gram-Schmidt regression and application in cutting tool abrasion prediction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(06): 729-733. (in Chinese)
Citation: Wang Huiwen, Chen Meiling, Gilbert Saportaet al. Gram-Schmidt regression and application in cutting tool abrasion prediction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(06): 729-733. (in Chinese)

Gram-Schmidt回归及在刀具磨损预报中的应用

详细信息
    作者简介:

    王惠文(1957-),女,辽宁大连人,教授,wanghw@vip.sina.com.

  • 中图分类号: O 212.4

Gram-Schmidt regression and application in cutting tool abrasion prediction

  • 摘要: 多元线性回归是一种应用广泛的统计分析方法.在实际应用中,当自变量集合存在严重多重相关性时,普通最小二乘方法就会失效.为解决这一问题,利用Gram-Schmidt 正交变换,提出一种新的多元线性回归建模方法——Gram-Schmidt回归.该方法可实现多元线性回归中的变量筛选,同时也解决了自变量多重相关条件下的有效建模问题.将该方法应用于机械加工过程中刀具磨损的预报分析,有效地进行了变量筛选,并得到了解释性强同时拟合优度也很高的模型结果.

     

  • [1] Hoerl A E.Application of ridge analysis to regression problems[J].Chemical Engineering Progress, 1962,58:54-59 [2] Neter J, Wasserman W, Kutner M H. Applied linear regression models[M].New York:Richard D Irwin Inc,1983 [3] Wold S, Martens H, Wold H. The multivariate calibration problem in chemistry solved by the PLS method Ruhe A, Kgstrm B.Proc Conf Matrix Pencils, Lectures Notes in Mathematics. Heidelberg:Springer-Verlag, 1983 [4] Tenenhaus M. La régression PLS théorie et pratique[M]. Paris:Editions Technip,1998 [5] Jain S K, Gunawardena A D. Linear algebra:an interactive approach[M].Beijing:China Machine Press,2003 [6] Lazraq A, Cleroux R, Gauchi J P. Selecting both latent and explanatory variables in PLS1 regression model [J]. Chemometrics and Intelligent Laboratory Systems,2003,66:117-126 [7] 刘强,尹力.一种简化递推偏最小二乘建模算法及其应用[J].北京航空航天大学学报,2003,29(7):640-643 Liu Qiang, Yin Li. Study on an improved recursive partial least-squares modeling approach and application[J]. Journal of Beijing University of Aeronautics and Astronautics,2003,29(7):640-643(in Chinese)
  • 加载中
计量
  • 文章访问数:  2800
  • HTML全文浏览量:  110
  • PDF下载量:  798
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-06-05
  • 网络出版日期:  2008-06-30

目录

    /

    返回文章
    返回
    常见问答