Numerical modeling of high strain compression of anisotropic elastic open-cell foams
-
摘要: 基于各向异性开孔泡沫的随机模型,对低密度弹性开孔泡沫材料的压缩力学行为进行了有限元数值模拟,得到了其应力-应变曲线及弹性坍塌强度.讨论了模型的随机度、各向异性比及相对密度对力学性能的影响.结果表明,沿不同方向加载时,各向异性胞体的微观变形机制不尽相同,且变形较大时,支柱的弹性屈曲占主导地位;模型随机度的增大,使两个方向的压缩无量纲应力-应变曲线均有所降低,且 λ =1时的无量纲应力-应变曲线与实验曲线吻合得较好.此外,开孔泡沫各向异性比的增大可使胞体伸长方向的弹性坍塌强度增大,而垂直方向的弹性坍塌强度则减小.Abstract: Based on the anisotropic irregular model, the compressive mechanical properties of low-density open-cell elastic foams were simulated by finite element analysis. The compressive stress-strain curves and elastic collapse strength were obtained in order to investigate the influence of anisotropic ratio, random degrees and relative densities on the mechanical properties. The results show that the deformation mechanism is different when loads are applied in different directions, and strut buckling becomes the main deformation mechanism at large compressive strains. A larger anisotropic ratio leads to larger elastic collapse strength along the cell rising direction and lower elastic collapse strength in the vertical direction. Meanwhile, the higher random degree causes lower stress-strain curves in both directions. When λ =1, the effective stress-strain curves well accord with the experimental curves.
-
Key words:
- anisotropy /
- foams /
- mechanical properties /
- finite element method /
- high strain
-
[1] 卢子兴,石上路.低密度开孔泡沫材料力学模型的理论研究进展[J].力学与实践,2005, 27(5):13-20 Lu Zixing, Shi Shanglu. Theoretical studies on mechanical models of low density foam [J]. Mechanics in Engineering, 2005, 27(5):13-20(in Chinese) [2] Van der Burg M W D, Shulmeister V, Van der Geissen E, et al. On the linear elastic properties of regular and random open-cell foams models[J]. J Cell Plast, 1997,33:31-54 [3] Shulmeister V, Van der Burg M W D, Van der Giessen E, et al. A numerical study of large deformations of low-density elatomeric open-cell foams[J]. Mech Mater, 1998, 30(2): 125-140 [4] Zhu H X, Hobdell J R, Windle A H. Effect of cell irregularity on the elastic properties of open-cell foams[J]. Acta Mater, 2000, 48(20): 4893-4900 [5] Zhu H X, Windle A H. Effects of cell irregularity on the high strain compression of open-cell foams[J]. Acta Mater, 2002, 50(5):1041 1052 [6] Zhang Jialei, Lu Zixing. Numerical modeling of the compressive deformation process of elastic open-cell foams[J]. Chinese Journal of Aeronautics(English Edition), 2007,20(3):215-222 [7] 卢子兴,张家雷,王嵩.各向异性随机泡沫模型的弹性性能分析[J].北京航空航天大学学报, 2006,32(12):1468-1471 Lu Zixing,Zhang Jialei, Wang Song. Investigation into elastic properties of anisotropic random foam model[J].Journal of Beijing University of Aeronautics and Astronautics, 2006,32(12):1468-1471(in Chinese) [8] Gong L, Kyriakides S. Compressive response of open-cell foams. Part I: Morphology and elastic properties[J]. International Journal of Solids and Structures, 2005, 42(5-6 ):1355-1379 [9] Schraad M W, Harlow F H. A stochastic constitutive model for disordered cellular materials: finite-strain uni-axial compression[J]. International Journal of Solids and Structures,2006, 43(11-12 ):3542-356 [10] 卢子兴,田常津.关于泡沫塑料各向异性模型的修正[J].应用力学学报, 1996, 13(4):108-111 Lu Zixing,Tian Changjin. Modification of anisotropic model for foam plastics[J]. Chinese Journal of Applied Mechanics,1996, 13(4):108-111(in Chinese) [11] Gibson L J, Ashby M F. Cellular solids: structure and properties[M].2nd ed.London:Cambridge Univeity Press,1997
点击查看大图
计量
- 文章访问数: 3557
- HTML全文浏览量: 112
- PDF下载量: 1119
- 被引次数: 0