Triangle mesh optimization based on DSI interpolation
-
摘要: 通过对三角网格的单元顶点进行几何位置调整,提高了网格的质量,实现了网格的质量优化.几何位置调整是使用离散点光滑插值(DSI,Discrete Smooth Interpolation)实现的,针对在计算时影响质量优化的邻接边界的单元顶点,采用了在边界处补偿三角形的方法,消除了单元收缩,提高了网格的质量.与加权拉普拉斯算法进行了比较和分析,优于拉普拉斯算法;为了使三角网格在位置调整时保持原始网格的几何细节特征,在插值算法中施加了控制点约束.最后使用算例对算法进行了验证.Abstract: The algorithm of triangle mesh optimization was provided by optimizing situation of the triangle vertices. The situation optimization is based on the discrete smooth interpolation(DSI). The compensated triangles were added to the vertex adjacent to the boundary during interpolation iterative computation in order to improve the optimization effect. The control point constraints were implemented in the interpolation algorithm in order to maintain the geometry detail characteristic of the primitive triangle mesh model. The algorithm in this dissertation was compared with the additive weighting Laplace algorithm in effect and applicability. With the improved algorithm, the adjustment triangle mesh both maintained the primitive mesh partial detail characteristic and improve the triangle quality well.
-
Key words:
- computational geometry /
- triangulation /
- interpolation /
- optimization
-
[1] Hoppe H,DeRose T,Duchamp T,et al.Surface reconstruction from unorganized points[J]. Computer Graphics, 1992, 26(2): 71-78 [2] Chen X. Surface modeling of range data by constrained triangulation[J]. Computer Aided Design, 1994, 26(3):632-645 [3] 王群,李爱平,马淑梅.局部网格狭长三角形的品质改善及实现[J].同济大学学报(自然科学版),2004,32(11):1508-1511 Wang Qun, Li Aiping, Ma Shumei. Improvement and realization of quality of local-long-narrow triangular mesh[J]. Journal of Tongji University(Natural Science), 2004,32(11):1508-1511(in Chinese) [4] 苏从勇,庄越挺,黄丽,等.基于正交图像生成人脸模型的合成分析方法[J].浙江大学学报(工学版),2005,39(2):175-179 Su Congyong,Zhuang Yueting,Huang Li,et al.Analysis-by-synthesis approach for facial modeling based on orthogonal images[J]. Journal of Zhejiang University(Engineering Science), 2005,39(2):175-179(in Chinese) [5] Ruppert J. A delaunay refinement algorithm for quality 2-dimensional mesh generation[J]. Journal of Algorithm, 1995, 18(3): 458-585 [6] Jonathan Richard Shewchuk. A condition guaranteeing the existence of higher-dimensional constrained Delaunay triangulations Proceedings of the Fourteenth Annual Symposium on Computational Geometry.Minneapolis, Minnesota: ACM Press,1998, 76-85 [7] Rivara M C,Hitschfeld N,Simpson B. Termal-edges Delaunay(small-angle based) algorithm for the quality triangulation problem[J]. Computer Aided Design, 2001,33(2):263-277 [8] Leif Kobbelt,Swen Campagna,Jens Vorsatz,et al. Interactive multi-resolution modeling on arbitrary meshes Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH. Orlando: ACM Press, 1998, 105-114 [9] 彭芳瑜,周云飞,周济.基于广义能量法的曲面光顺[J].华中科技大学学报(自然科学版),2002,30(2):5-8 Peng Fangyu,Zhou Yunfei,Zhou Ji.Algorithm of surface smoothing based on extended energy minimization[J]. Journal of Huazhong University of Science and Technology(Nature Science Edition),2002,30(2):5-8(in Chinese) [10] 李光明,田捷,何晖光,等.基于距离均衡化的网格平滑算法[J].计算机辅助设计与图形学学报,2002,14(9):820-823 Li Guangming,Tian Jie,He Huiguang,et al.A mesh smoothing algorithm based on distance equalization[J]. Journal of Computer-Aided Design & Computer Graphics, 2002,14(9):820-823(in Chinese) [11] Hoppe H,DeRose T,Duchamp T,et al.Mesh optimization[J].Computer Graphics,1993,27(1):19-26 [12] Mallet J L. Discrete smooth interpolation in geometric modeling[J]. ACM-Transactions on Graphics, 1989, 8(2):121-144 [13] Taubin G.A signal processing approach to fair surface design Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH. Los Angeles, California: ACM Press, 1995, 351-358 [14] Mallet J L. Discrete smooth interpolation[J]. Computer Aided Design, 1992, 24(4):263–270 [15] Levy B, Mallet J L. Discrete smooth interpolation: constrained discrete fairing for arbitrary meshes The 19th Gocad Meeting. Inria Lorraine: , 1999
点击查看大图
计量
- 文章访问数: 3984
- HTML全文浏览量: 136
- PDF下载量: 2052
- 被引次数: 0