留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于遗传模糊聚类的机群编队最优分配方法

熊伟 丁全心 陈宗基 周锐

熊伟, 丁全心, 陈宗基, 等 . 基于遗传模糊聚类的机群编队最优分配方法[J]. 北京航空航天大学学报, 2008, 34(02): 193-196.
引用本文: 熊伟, 丁全心, 陈宗基, 等 . 基于遗传模糊聚类的机群编队最优分配方法[J]. 北京航空航天大学学报, 2008, 34(02): 193-196.
Xiong Wei, Ding Quanxin, Chen Zongji, et al. Optimized formation assignment for large-scale air fleet using fuzzy clustering and genetic algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(02): 193-196. (in Chinese)
Citation: Xiong Wei, Ding Quanxin, Chen Zongji, et al. Optimized formation assignment for large-scale air fleet using fuzzy clustering and genetic algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(02): 193-196. (in Chinese)

基于遗传模糊聚类的机群编队最优分配方法

基金项目: 国家863资助项目(2006AA04Z260);国家自然科学资助项目基金(60674103);航空科学基金资助项目(2006ZC51026)
详细信息
  • 中图分类号: V 221+.91

Optimized formation assignment for large-scale air fleet using fuzzy clustering and genetic algorithm

  • 摘要: 针对当前机群的编队分配存在效率低、编队分配结果不可靠、智能性差等问题,提出了一种新的结合遗传算法和模糊聚类算法的机群编队最优分配方法.该混合算法通过模糊聚类算法解决了机群的编队分配不确定性问题,并且通过对传统遗传操作算子的改进,采用改进的遗传算法有效地克服了模糊聚类算法容易陷入局部极小值和对初始条件敏感的缺点,使机群的编队分配能快速收敛至全局最优解.3组不同分布类型的机群编队分配算例结果表明,该混合算法具有较好的通用性、有效性和智能性,适用于机群的编队最优分配.

     

  • [1]张科施,王正平.基于遗传模拟退火算法的空战编队优化研究[J].西北工业大学学报,2003,21(4)477-480 Zhang Keshi, Wang Zhengping. On optimizing largescale aircombat formation with simulatedannealing genetic algorithm[J]. Journal of Northwestern Polytechnical University, 2003, 21(4):477-480(in Chinese)  [2]Patrick C H Ma, Keith C C Chan, Xin Yao, et al. An evolutionary clustering algorithm for gene expression microarray data analysis[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(3):296-314 [3]Bezdek J C. Pattern recognition with fuzzy objective function algorithms[M]. New York: Plenum Press, 1981:43-93 [4]Nikhil R Pal, Kuhu Pal, James M Keller, et al. A possibilistic fuzzy cmeans clustering algorithm[J]. IEEE Transactions on Fuzzy Systems, 2005, 13(4):517-530 [5]Holland J H. Genetic algorithms[J]. Scientific American, 1992,(9):44-50 [6]Vasconcelos J A, Ramirez J A, Takahashi R H C, et al. Improvements in genetic algorithms[J]. IEEE Transactions on Magnetics, 2001, 37(5):3414-3417 [7]Choe H, Jordan J B. On the optimal choice of parameters in a fuzzy cmeans algorithm[C]Proceedings of The 1st IEEE International Conference on Fuzzy Systems. San Diego, CA, USA: IEEE, 1992: 349-354 [8]Shen Yi, Shi Hong, Zhang Jianqiu. Improvement and optimization of a fuzzy cmeans clustering algorithm[C]Proceedings of The 18th IEEE Instrumentation and Measurement Technology Conference.Budapes: IEEE, 2001:1430-1433 [9]叶海军.模糊聚类分析技术及其应用研究[D].合肥:合肥工业大学电气与自动化工程学院,2006 Ye Haijun. The research on fuzzy clustering analysis technology and its application[D]. Hefei: School of Electric Engineering and Automation, HeFei University of Technology, 2006(in Chinese) [10]Choi D H, Oh S Y. A new mutation rule for evolutionary programming motivated from backproagation learning[J]. IEEE Transactions on Evolutionary Computation, 2000, 4(2): 188-190Choe H, Jordan J B. On the opt
  • 加载中
计量
  • 文章访问数:  2530
  • HTML全文浏览量:  38
  • PDF下载量:  1025
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-02-05
  • 网络出版日期:  2008-02-29

目录

    /

    返回文章
    返回
    常见问答