留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

哈密顿体系下功能梯度压电板/管静动力三维解

代海涛 程伟 李明志

代海涛, 程伟, 李明志等 . 哈密顿体系下功能梯度压电板/管静动力三维解[J]. 北京航空航天大学学报, 2008, 34(01): 104-107.
引用本文: 代海涛, 程伟, 李明志等 . 哈密顿体系下功能梯度压电板/管静动力三维解[J]. 北京航空航天大学学报, 2008, 34(01): 104-107.
Dai Haitao, Cheng Wei, Li Mingzhiet al. 3D solutions for static/vibration of FGPM plate/pipe in Hamiltonian system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(01): 104-107. (in Chinese)
Citation: Dai Haitao, Cheng Wei, Li Mingzhiet al. 3D solutions for static/vibration of FGPM plate/pipe in Hamiltonian system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(01): 104-107. (in Chinese)

哈密顿体系下功能梯度压电板/管静动力三维解

详细信息
    作者简介:

    代海涛(1979-),男,湖北天门人,博士生,daiht@126.com.

  • 中图分类号: O 325

3D solutions for static/vibration of FGPM plate/pipe in Hamiltonian system

  • 摘要: 根据哈密顿原理建立了三维压电动力学耦合系统的哈密顿对偶体系,将经典的弹性力学一类变量问题转化为二类变量,并建立了哈密顿正则方程组.分别在不同坐标系下研究了功能梯度压电材料FGPM(Functionally Graded Piezoelectric Material)四边简支板及两端简支管的静动力学特性,通过辛算法进行了数值分析.结果表明,在哈密顿对偶体系中能够求解复杂FGPM结构机电耦合静动力学问题;在FGPM多层板/管结构中,面外变量在厚度方向连续分布,而面内变量在材料分界面处存在突变现象.

     

  • [1] 吴大方,刘安成,麦汉超,等.压电智能柔性梁振动主动控制研究[J].北京航空航天大学学报, 2004, 30(2): 160-163 Wu Dafang Liu Ancheng Mai Hanchao, et al. Study on active vibration control of piezoelectric intelligent flexible beam[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(2):160-163(in Chinese) [2] Liu G R, Dai K Y, Han X, et al. Dispersion of waves and characteristic wave surfaces in functionally graded piezoelectric plates[J]. Journal of Sound and Vibration, 2003, 268(1):131-147 [3] Chen Weiqiu, Bian Zuguang, Lu Chaofeng, et al. 3D free vibration analysis of a functionally graded piezoelectric hollow cylinder filled with compressible fluid[J]. International Journal of Solid and Structures, 2004, 41(3-4):947-964 [4] Feng Kang. Difference schemes for Hamiltonian formulism and symplectic geometry[J]. Journal of Computational Mechanics, 1986, 4(3):279-289 [5] 钟万勰.应用力学对偶体系[M].北京:科学出版社, 2002 Zhong Wanxie. Symplectic elasticity[M]. Beijing: Science Press, 2002(in Chinese) [6] 姚伟岸.电磁弹性固体三维问题的广义变分原理[J].计算力学学报,2003,20(4):487-489 Yao Weian. Generalized variational principles of three-dimensional problems in magnetoelectroelastic solids[J].Chinese Journal of Computational Mechanics,2003,20(4):487-489(in Chinese) [7] Bhangale Rajesh K, Ganesan N. Free vibration studies of simply supported non-homogeneous functionally graded magneto-electro-elastic finite cylindrical shells[J]. Journal of Sound and Vibration, 2005, 288(1-2):412-422
  • 加载中
计量
  • 文章访问数:  3339
  • HTML全文浏览量:  173
  • PDF下载量:  914
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-01-08
  • 网络出版日期:  2008-01-31

目录

    /

    返回文章
    返回
    常见问答