TVD scheme and numerical simulation of aerodynamic heating in hypersonic flows
-
摘要: 为了在化学非平衡流动中获得准确的流场解以及表面热流分布,将总变差减小TVD(Total Variation Diminishing)格式中的熵修正函数,由各向同性分布改为各向异性分布,同时让熵修正函数中的参数与流场中的压力梯度分布相关.将改进后的熵修正函数运用到高超音速化学非平衡绕流流场的数值模拟中,获得了较使用原有熵修正函数更为准确的流场参数和表面热流分布.采用改进的熵修正函数,可以提高壁面附近的粘性分辨率,降低热流计算结果对壁面附近法向网格尺度的敏感性.Abstract: In order to get more accuracy results for heat transfer in chemical non-equilibrium hypersonic flow simulations, a new entropy correction function in TVD (total variation diminishing) scheme was presented. By study of characters of the flow in boundary layer, an anisotropy entropy correction function was used in the TVD scheme instead of the isotropy entropy one, the new coefficient in the entropy correction function, which is varied according to the distribution of the pressure in the flow field, was adopted. The numerical test of the chemical non-equilibrium hypersonic flows over sphere verifies the new entropy correction function. The flow field and the surface heat transfer rate were obtained by the numerical simulation. The results show that the new entropy correction function can improve the accuracy of surface heat transfer as well as the flow field in numerical simulations. The new entropy correction function can also improve viscosity resolution near the surface. The surface heat transfer rate, which is calculated by using new entropy correction function, is less sensitive to the size of grid in normal direction near the surface.
-
Key words:
- hypersonic flow /
- aerodynamic heating /
- heat flux
-
[1] Hoffmann K A, Siddiqui M S, Chiang S T. Difficulties associated with the heat flux computations of high speed flows by the Navier-Stock equations . AIAA-91-0467, 1991 [2] Siddiqui M S, Hoffmann K A, Chiang S T, et al. A comparative study of the Navier-Stokes solvers with emphasis on the heat transfer computations of high speed flows . AIAA-92-0835, 1992 [3] Harten A. High resolution schemes for hyperbolic conservation laws[J]. Journal of Computational Physics, 1983, 49(3):357-393 [4] 王浩. 高超音速流动数值模拟与热流数值计算 .北京:北京航空航天大学航空科学与工程学院,2002 Wang Hao. Numerical simulation of hypersonic flows and calculation of aerothermal heating . Beijing:School of Aeronautic Science and Engineering, Beijing University of Aeronautics and Astronautics, 2002(in Chinese) [5] Lee C H, Chu Y H. A new type of TVD schemes for computations of high speed flows . AIAA-93-2773, 1993 [6] Zheng B, Lee C H. The effects of limiters on high resolution computations of hypersonic flows over bodies with complex shapes[J]. Communications in Nonlinear Science & Numerical Simulation,1998,3(2):82-87 [7] Yee H C, Klopfer G H, Montagne J L. High-resolution shock-capturing schemes for inviscid and viscous hypersonic flows[J]. Journal of Computational Physics, 1990,88(1):31-61 [8] 欧阳水吾,谢中强.高温非平衡空气绕流 .北京:国防工业出版社, 2001:132-139 Ouyang Shuiwu, Xie Zhongqiang. High temperature nonequilibrium air flow . Beijing:National Defense Industry Press, 2001:132-139 ( in Chinese)
点击查看大图
计量
- 文章访问数: 2653
- HTML全文浏览量: 124
- PDF下载量: 1073
- 被引次数: 0