留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航天器交会最终逼近段相对姿态估计与控制

朱仁璋 林彦

朱仁璋, 林彦. 航天器交会最终逼近段相对姿态估计与控制[J]. 北京航空航天大学学报, 2007, 33(05): 544-548.
引用本文: 朱仁璋, 林彦. 航天器交会最终逼近段相对姿态估计与控制[J]. 北京航空航天大学学报, 2007, 33(05): 544-548.
Zhu Renzhang, Lin Yan. Relative attitude estimation and control schemes for the final approach phase of spacecraft rendezvous[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(05): 544-548. (in Chinese)
Citation: Zhu Renzhang, Lin Yan. Relative attitude estimation and control schemes for the final approach phase of spacecraft rendezvous[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(05): 544-548. (in Chinese)

航天器交会最终逼近段相对姿态估计与控制

详细信息
    作者简介:

    朱仁璋(1941-),男,江苏扬州人,教授,rz_zhu@tom.com.

  • 中图分类号: V 448.22

Relative attitude estimation and control schemes for the final approach phase of spacecraft rendezvous

  • 摘要: 对航天器交会对接最终逼近段,给出姿态运动学方程统一形式以及相对姿态动力学方程;除了应用交会航天器的绝对姿态运动方程进行相对姿态估计(间接法)外,还直接应用相对姿态运动方程进行相对姿态估计(直接法);阐述相对姿态控制的相平面法与四元数反馈法的设计方法.相平面控制法应用常值推力,针对小姿态角机动的特点,将相对姿态通道解耦为3个独立的二阶子系统,设计相平面推力方向切换函数;四元数反馈法应用简化的基于本征轴旋转的线性二阶系统,选择相对四元数与角速率反馈增益系数,确定控制力矩.此外,对相对姿态估计与控制方法进行模拟计算与比较.理论分析与模拟计算结果表明:应用扩展Kalman滤波的相对姿态间接估计法与直接估计法是有效的,后者有可能简化估计算法;相平面控制法与四元数反馈法均可有效实现相对姿态控制,前者应用常值推力(推力方向与姿态反馈有关),较易实现,但动力消耗较大,后者按控制力矩随姿态反馈量而变,动力消耗较小.

     

  • [1] Philip N K, Ananthasayanam M R. Relative position and attitude estimation and control schemes for the final phase of an autonomous docking mission of spacecraft[J]. Acta Astronautica, 2003,52(7):511-522 [2] 朱仁璋,尹艳. 论空间交会最终平移段制导设计[J]. 中国空间科学技术,2004, 24(5):1-8 Zhu Renzhang, Yin Yan. Guidance strategy design for the final translation of space rendezvous[J]. Chinese Space Science and Technology, 2004, 24(5):1-8(in Chinese) [3] 朱仁璋,林彦,张磊. 航天器交会计算机视觉系统测距求解新算法[J]. 北京航空航天大学学报,2006, 32(7):764-768 Zhu Renzhang, Lin Yan, Zhang Lei. A new algorithm of solving for ranges in determining relative states using computer vision system during the final translation phase of spacecraft rendezvous and docking[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(7):764-768(in Chinese) [4] Calboun P, Dabney R. A solution to the problem of determining the relative 6DOF state for spacecraft automated rendezvous and docking Fowski W J, Birnbaum M M. Proceedings of SPIE Space Guidance, Control and Tracking II. Orlando, USA:SPIE, 1995:175-184 [5] Fehse W. Automated rendezvous and docking of spacecraft[M]. Cambridge:Cambridge University Press, 2003:171-180 [6] Lefferts E J, Markley F L, Shuster M D. Kalman filtering for spacecraft attitude estimation[J]. Journal of Guidance, Control, and Dynamics, 1982, 5(5):417-429 [7] Wertz J R. Spacecraft attitude determination and control[M]. Dordrecht:D Reidel Publishing Company, 1978 [8] Hale M J, Vergez P, Meerman M J, et al. Kalman filtering and the attitude determination and control task . AIAA-2004-6018, 2004 [9] Wie B, Weiss H, Arapostathis A. Quaternion feedback regulator for spacecraft eigenaxis rotations[J]. Journal of Guidance, Control, and Dynamics, 1989, 12(3):375-380 [10] Claudinon B, Marchal Ph, Fehse W. Control techniques for rendezvous and docking Matra S A. Automatic Control in Space. Toulouse, France:Pergamon Press, 1986:287-294 [11] Maybeck P S. Stochastic models, estimation and control[M]. New York:Academic Press Inc, 1982
  • 加载中
计量
  • 文章访问数:  2932
  • HTML全文浏览量:  39
  • PDF下载量:  1071
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-06-15
  • 网络出版日期:  2007-05-31

目录

    /

    返回文章
    返回
    常见问答