Gain scheduling cross feedback control approach for magnetic suspending flywheel
-
摘要: 磁悬浮飞轮转子在高转速下表现出的陀螺效应是影响系统稳定性的主要因素.为了提高磁悬浮飞轮的失稳转速,针对陀螺效应引起的系统章动失稳和进动失稳,提出了一种基于转速的增益预调交叉反馈控制方法,针对不同的转速段,建立在线控制相对应的交叉反馈通道增益和带宽参数表,对进动模态和章动模态分别实现交叉相位补偿.采用该控制方法用经典控制理论中的根轨迹法对系统的章动稳定性进行了仿真并对控制参数进行了优化.仿真和实验结果表明,采用这种基于转速的增益预调交叉反馈的控制算法,能够有效地抑制磁悬浮飞轮转子陀螺效应所导致的章动失稳,所设计的磁悬浮飞轮原理样机能够稳定运行在其额定转速30000r/min.Abstract: At high rotational speeds, the gyroscopic effect of flywheel rotor is the major factor that influences rotor stability. The gyroscopic effects will lead to nutation destabilization or procession destabilization. A gain scheduling proportional cross feedback control algorithm based on the rotational speed is accepted to compensate nutation and precession lag in phase by creating the parameter table of cross feedback channel according to different rotational speed interval. The active magnetic bearing-rotor system model based on the gyroscopic technical equation is established. Root locus method of the classical control theory is used to give nutation stability simulation and analysis based on this model. Instruction of setting and optimization of the controlling parameter is presented. Simulation and test prove that this method can improve nutation stability caused by gyroscopic effects effectively. The designed prototype magnetic suspending flywheel can reach its rated design speed (30000r/min) stably.
-
Key words:
- flywheels /
- magnetic bearings /
- gyroscopic effects /
- gain scheduling
-
[1] Ahrens M, Kucera L. Cross feedback control of a magnetic bearing system controller design considering gyroscopic effects Paul E M. Proc 3rd Int Symp Magnetic Suspension Technol. Pennsylvania, USA:Technomic Publishing Company Inc,1995:177-194 [2] Ahrens M, Kucera L. Analytical calculation of fields, forces and losses of a radial magnetic bearing with rotor considering eddy currents Fimio Matsumura. Proc 5th Int Symp Magnetic Bearings. Kanazawa, Japan:Kanazawa City Cultural Hall, 1996:125-131 [3] 董淑成,房建成,俞文伯. 基于PID控制的主动磁轴成飞轮-转子系统稳定性研究[J]. 宇航学报, 2005, 26(3):296-300 Dong Shucheng, Fang Jiancheng, Yu Wenbo. Study on dynamic stability of flywheel rotor supported by AMB based on PID contriller[J]. Journal of Astronautics, 2005, 26(3):296-300(in Chinese) [4] Fan Yahong, Fang Jiancheng. Experimental research on the nutational stability of magnetically suspended momentum wheel in control moment gyroscope (CMG) Lyndon Scott Stephens. The Ninth International Symposium on Magnetic Bearings. Lexington, Kentucky, USA:University of Kentucky, 2004:116-118 [5] Sivrioglus S. Gain-scheduled H infinity control of active magnetic bearing system with gyroscopic effect[J]. Transactions of the Japan Society of Mechanical Engineer, 1997, 63(610):1940-1947 [6] Sivrioglu S, Nonami K. Sliding mode control with time-varying hyperplane for AMB systems[J]. IEEE Trans Mech, 1998, 3(1):51-59 [7] Ahrens M. Performance of a magnetically suspended flywheel energy storage device[J]. IEEE Trans Contr, 1996,4(5):494-502 [8] Hawkins L, Murphy B, Kajs J. Analysis and testing of a magnetic bearing energy storage flywheel with gain-scheduled MIMO control ASME. Proceedings of ASME TURBOEXPO 2000. Munich, Germany:ASME, 2000:173-179 [9] 沈钺,孙岩桦,王世琥. 磁悬浮飞轮系统陀螺效应的抑制[J]. 西安交通大学学报, 2003, 37(11):1105-1109 Shen Yue, Sun Yanhua, Wang Shihu. Reduction of gyroscopic effect of a magnetic bearing supported flywheel system[J]. Journal of Xi′an Jiaotong University, 2003, 37(11):1105-1109(in Chinese) [10] 张剀,赵雷,赵鸿宾. 磁悬浮飞轮控制系统设计中LQR方法的应用研究 . 机械工程学报, 2004, 40(2):127-131 Zhang Kai, Zhao Lei, Zhao Hongbin. LQR method research on control of the flywheel system suspended by AMBs[J]. Chinese Journal of Mechanical Engineering, 2004, 40(2):127-131(in Chinese)
点击查看大图
计量
- 文章访问数: 3408
- HTML全文浏览量: 129
- PDF下载量: 904
- 被引次数: 0