Improving the atomic oxygen resistance of epoxy resin using organosilicon
-
摘要: 为了提高航天器树脂材料的抗原子氧剥蚀的性能,把缩水甘油醚氧丙基三甲氧基硅烷加入到环氧树脂中,并对所制成的环氧树脂试样进行原子氧效应地面模拟试验,对试验前后试样的质量损失、表面形貌、表面成分和结构的变化进行了对比和分析.结果表明,添加有机硅烷可以有效地提高环氧树脂的抗原子氧剥蚀性能,试样表面在原子氧的作用下生成了一种三维网状结构,该结构有效地阻止了原子氧对底层材料的进一步剥蚀,使试样的质量损失和剥蚀率明显下降.50h实验之后,添加了质量分数为25.0%的有机硅烷,该材料的剥蚀率约为纯环氧树脂的25%.Abstract: To improve the atomic oxygen(AO) erosion resistance of resin matrix materials applied to spacecrafts, γ-Glycidoxypropyltrimethoxy silane was filledin the epoxy resin with a direct-mixing method and then the AO exposure experiments were carried out. After the AO exposure, a three-dimension network structure was formed on the sample surfaces. This network structure protected the underlying materials from the AO erosion and the AO resistance of the polymer was improved remarkably; the mass loss and erosion yield decreased distinctly. It proves that filling the organosilicon in the epoxy resin is an effective method to improve AO resistance of the epoxy resin. After AO exposure for 50 h, the erosion yield of the polymer containing 25.0% organosilicon decreased to 25% of that of the pristine epoxy resin.
-
Key words:
- silane /
- epoxy resins /
- spacecraft /
- atomic oxygen resistance
-
[1] Silverman E M. Spacecraft environmental effects on spacecraft:LEO materials selection guide . NASA CR-4661, California:TRW Space & Electronic Group, 1996 [2] Packirisamy S, Schwam D, Litt M H. Atomic oxygen resistant coatings for low earth orbit space structures[J]. Journal of Materials Science, 1995, 30:308-320 [3] de Groh K K, Banks B A. Atomic-oxygen undercutting of long duration exposure facility aluminized-kapton multilayer insulation [J]. Journal of Spacecraft and Rockets, 1994, 31(4):656-664 [4] Banks B A, Rutledge S K, Auer B M, et al. Atomic oxygen undercutting of defects on SiO2 protected polyimide solar blankets Srinivasan V, Banks B A. Proceedings of a Symposium Sponsored by the TMS-ASM Joint Corrosion and Environmental Effects Committee. Pennsylvania:Warrendale, 1990:15-33 [5] Illingsworth M L, Betancourt J A, He L, et al. Zr-containing 4, 4′-ODA/PMDA Polyimide Composites . NASA TM-2001-211099, 2001 [6] Kiefer R L, Orwoll R A, Aquino E C, et al. The effects of atomic oxygen on polymer films containing bis(triphenyltin) oxide [J]. Polymer Degradation and Stability, 1997, 57:219-226 [7] Hseih D T, Lloxyd T B. Nanocomposite approach to enhance the atomic oxygen resistance Kliger H S, Rasmussen B M, Pilato L A, et al., 43rd International SAMPE Symposium and Exhibition on Materials and Process Affordability-Keys to the Future. Pennsylvania:Warrendale, 1998:1170-1177 [8] 王明珠,赵小虎,沈志刚,等,空心微珠用于环氧树脂抗原子氧剥蚀试验研究[J].北京航空航天大学学报,2004,30(8):713-717 Wang Mingzhu, Zhao Xiaohu, Shen Zhigang, et al. Experimental investigations on improvement of AO-resistant of epoxy resin by filled with superfine cenospheres [J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(8):713-717(in Chinese) [9] 沈志刚,赵小虎,陈军,等,灯丝放电磁场约束型原子氧效应地面模拟试验设备[J].航空学报,2000,21(5):425-430 Shen Zhigang, Zhao Xiaohu, Chen Jun, et al. Ground-based atomic oxygen effects simulation facility with the filament discharge and bound of magnetic field[J]. Acta Aeronautica et Astronautica Sinica, 2000, 21(5):425-430 (in Chinese)
点击查看大图
计量
- 文章访问数: 3371
- HTML全文浏览量: 168
- PDF下载量: 766
- 被引次数: 0