留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于N-S方程的尾迹面法翼型气动阻力计算

刘周 朱自强 王晓璐 吴宗成

刘周, 朱自强, 王晓璐, 等 . 基于N-S方程的尾迹面法翼型气动阻力计算[J]. 北京航空航天大学学报, 2006, 32(03): 288-292.
引用本文: 刘周, 朱自强, 王晓璐, 等 . 基于N-S方程的尾迹面法翼型气动阻力计算[J]. 北京航空航天大学学报, 2006, 32(03): 288-292.
Liu Zhou, Zhu Ziqiang, Wang Xiaolu, et al. Wake integration method for airfoil drag evaluation using N-S equations[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(03): 288-292. (in Chinese)
Citation: Liu Zhou, Zhu Ziqiang, Wang Xiaolu, et al. Wake integration method for airfoil drag evaluation using N-S equations[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(03): 288-292. (in Chinese)

基于N-S方程的尾迹面法翼型气动阻力计算

基金项目: 国家自然科学基金资助项目(10472013); 航空科学基金资助项目(04A51044)
详细信息
  • 中图分类号: V 211.3

Wake integration method for airfoil drag evaluation using N-S equations

  • 摘要: 研究了计算翼型阻力改进的方法——尾迹面法及尾迹面积分的位置和相应的积分技术.在亚跨声速时分别采用了表面积分和尾迹积分求得给定翼型RAE2822的阻力.结果显示,2种方法具有相同的结果,表明尾迹面积分方法是有效的,与实验值吻合较好.尾迹面法中,尾迹面位置应处于离后缘相对弦长距离0.6~1.0之间.尾迹面积分方法中积分结果不依赖于物体的详细几何外形,可以预计对曲率变化大的三维复杂外形,该方法有更大的优势.

     

  • [1] Paterson J H, Blackerby W T, Schwanebeck J C. Analysis of flight test data on the C-141A aircraft . NASA CR-1558, Washington, D C:NASA, 1970 [2] MacWilkinson D G, Blackerby W T, Paterson J H. Correlation of full-scale drag predictions with flight measurements on the C-141A aircraft——phase II, wind tunnel test, analysis, and prediction techniques . NASA CR-2333, Washington, D C:NASA, 1974 [3] Meredith P T. Viscous phenomena affecting high-lift systems and suggestions for future CFD development . High-Lift Systems Aerodynamics, AGARD CP 315 . London:Technical Editing and Reproduction, Ltd,1993 [4] 刘 周,朱自强,付鸿雁,等.高升阻比翼型的设计[J].空气动力学学报,2004,22(4):410~415 Liu Zhou, Zhu Ziqiang, Fu Hongyan, %et al%. Design of airfoil with high ratio of lift over drag[J]. Acta Aerodynamica Sinica,2004,22(4):410~415(in Chinese) [5] Tinoco E N. An assessment of CFD prediction of drag and other longitudinal characteristics . AIAA 2001-1002,2001 [6] Peavey C C. Drag prediction for military aircraft using CFD . AIAA 2000-0383,2000 [7] Van Dam C P. Recent experience with different methods of drag prediction[J]. Progress in Aerospace Sciences, 1999,35:751~798 [8] Van Dam C P, Nikfetrat K, Wong K. Drag prediction at subsonic and transonic speeds using Euler methods[J]. Journal of Aircraft, 1995,32(4):839~845 [9] 刘 杰,朱自强,陈泽民,等.基于欧拉方程的尾迹面法气动力计算[J].航空学报,2005,26(4):417~421 Liu Jie, Zhu Ziqiang, Chen Zemin, %et al%. Wake integration method for aerodynamics evaluation using Euler equations[J]. Acta Aeronautica et Astronautica Sinica,2005,26(4):417~421(in Chinese) [10] Chao D D, Van Dam C P. Airfoil drag prediction and decomposition . AIAA, 98-2783,1998 [11] Jameson A, Schmidt W, Turkel E. Numerical solutions of the Euler equations by finite volume methods with Runge-Kutta time stepping schemes . AIAA 81-1259,1981 [12] Baldwin B S, Lomax H. Thin layer approximation and algebraic model for separated turbulent flows . AIAA 78-257,1978 [13] Cook P H, McDonald M A, Firmin M C P. Aerofoil RAE2822-pressure distributions, and boundary layer and wake measurements . AGARD-AR-138, 1979
  • 加载中
计量
  • 文章访问数:  3429
  • HTML全文浏览量:  346
  • PDF下载量:  664
  • 被引次数: 0
出版历程
  • 收稿日期:  2005-04-07
  • 网络出版日期:  2006-03-31

目录

    /

    返回文章
    返回
    常见问答