-
摘要:
针对激光雷达复材型面测量时测量精度的评定需求,提出了一种基于激光雷达回波信号信噪比(SNR)的精度分析方法。通过对复材型面检测结果进行评价,获取零件脱模后准确的变形量结果,有利于实现精准修模。所提方法考虑了测量工程中待测距离、入射角、材料属性等因素对测量结果产生的影响,研究激光雷达型面测量过程中回波信号信噪比与测量精度的联系,利用信噪比的变化规律,结合仪器不确定度,确定测量点云不同区域的精度修正因子,实现激光雷达大尺寸复材型面变形量检测结果的测量精度分析,减小了测量误差对变形量的影响。所提方法能准确评价测量结果的精度,获取复材型面的真实变形量。
Abstract:In order to meet the accuracy evaluation requirement of composite material surface measurement with lidar, this paper proposed an analysis method based on Signal to Noise Ratio (SNR) of lidar echo signals. By evaluating the detection results, the deformation results after the demolding can be obtained accurately, which is conducive to achieving the repairs of composite material mold. This method considers the influence of measurement distance, incident angle and material property on the results in measurement engineering. And the relationship between echo signal SNR and measurement accuracy in lidar measurement process is studied. Combined with SNR variation law and instrument uncertainty, the accuracy correction factor can be determined in different areas of measurement point-cloud. Finally, this method is used to realize measurement accuracy analysis of large-scale composite material surface deformation measurement results by lidar, which reduces the influence of the measurement error on deformation. This method can accurately evaluate the accuracy of measurement results and obtain the true deformation amount of composite material surface.
-
表 1 仪器不确定度与信噪比数值对应关系
Table 1. Correspondence between instrument uncertainty and SNR
待测距离/m 仪器不确定度/μm 信噪比/dB 2 24 56.5 4 43 47.8 6 61 43.1 8 82 38.7 10 102 35.9 表 2 精度修正因子与实测不确定度对应关系
Table 2. Correspondence between accuracy correction factor and measured uncertainty
测量分区 精度修正因子κ 实测不确定度/μm A 0.84 28.4 B 0.77 55.4 C 0.74 81.6 D 0.71 112.1 E 0.68 148.1 表 3 精度修正前后各区域平均变形量结果
Table 3. Average deformation results of each area before and after accuracy correction
测量分区 修正前变形量/mm 修正后变形量/mm A 1.83 1.80 B 2.31 2.25 C 1.72 1.64 D 1.57 1.46 E 2.03 1.88 -
[1] 陈绍杰.复合材料技术与大型飞机[J].航空学报, 2008, 29(3):605-610. doi: 10.3321/j.issn:1000-6893.2008.03.011CHEN S J.Composite technology and large aircraft[J].Acta Aeronautica et Astronautica Sinica, 2008, 29(3):605-610(in Chinese). doi: 10.3321/j.issn:1000-6893.2008.03.011 [2] WUCHER B, LANI F, PARDOEN T, et al.Simulation and verification of machining deformation for composite materials[J].Composites Part A:Applied Science and Manufacturing, 2014, 5(1):27-35. [3] 王衡, 孙明.激光跟踪仪在复合材料零件检测中的应用[J].航空制造技术, 2014, 57(Z2):93-94.WANG H, SUN M.Application of laser tracker in composites parts measurement[J].Aeronautical Manufacturing Technology, 2014, 57(Z2):93-94(in Chinese). [4] CHENG S D.Dimension variation predication and control for composites[D].Tallahassee: Florida State University, 2010. [5] 张军强.数字化模型获取技术在模具修复中的应用[D].南昌: 南昌大学, 2012.ZHANG J Q.The application of digital model acquire technology in mould repair[D].Nanchang: Nanchang University, 2012(in Chinese). [6] GUAN W Q.Laser tracker and its application in composite materials measurement[J].Fiber Composites, 2018, 35(4):23-25. [7] 钟日良, 马军, 苏亮, 等.数字化检测技术在复合材料制造过程中的应用[J].航空制造技术, 2018, 61(16):74-78.ZHONG R L, MA J, SU L, et al.Application of digital measurement technique in composite materials processing[J].Aeronautical Manufacturing Technology, 2018, 61(16):74-78(in Chinese). [8] LI J, JIANG J L, YING B.Application of digital measurement technology in the precise molding of composite materials[J].Hi-Tech Fiber and Application, 2019, 44(3):60-64. [9] The Joint Commitee for Guides in Metrology.International vocabulary of metrology basic and general concepts and associated terms(VIM): JCGM 200: 2012[R].3rd ed.[S.l.]: The Joint Commitee for Guides in Metrology, 2012. [10] YANG W, ZHAO J, DU X, et al.Laser diode transmitter for laser radar based on FM ranging principle[C]//International Symposium on Photoelectronic Detection and Imaging, Manufacturing, and Testing.Bellingham: SPIE, 2007: 662408. [11] GATT P, THOMSON J A, HENDERSON S W.Coherent laser radar range precision for range resolved and unresolved targets[C]//Proceedings of the 11th Coherent Laser Radar Conference, 2001. [12] 李相迎, 涂志明.雷达RCS目标特性测量的标定与精度分析[J].装备指挥学院学报, 2002, 13(2):81-83.LI X Y, TU Z M.Calibration and analysis of precision for radar RCS target signature[J].Journal of Institute of Command and Technology of Equipment, 2002, 13(2):81-83(in Chinese). [13] WEIBRING P, SMITH N J, EDNER H, et al.Development and testing of a frequency-agile optical parametric oscillator system for differential absorption LiDAR[J] Review of Scientific Instruments, 2013, 74(10):4478. [14] 王安祥, 张晓军, 张涵路.利用BRDF实验测量获取目标表面单位面积激光雷达截面[J].红外技术, 2008, 30(2):63-68. doi: 10.3969/j.issn.1001-8891.2008.02.001WANG A X, ZHANG X J, ZHANG H L.Laser rader cross section obtained by the measurement of bidirectional reflectance distribution function[J].Infrared Technology, 2008, 30(2):63-68(in Chinese). doi: 10.3969/j.issn.1001-8891.2008.02.001 [15] 张乐.激光雷达发射和接收光学系统研究[D].长沙: 国防科学技术大学, 2004.ZHANG L.Study on emitting and receiving optical systems of lidar[D].Changsha: National University of Defense Technology, 2004(in Chinese). -