Thermal boundary simulation and temperature prediction for aircraft fuel system with full flight profile
-
摘要:
通过仿真实验和机器学习,对影响飞机燃油系统温度的主要因素进行了研究,并对燃油系统温度进行了预测。对飞机燃油系统的基本结构布局进行了描述。利用Simulink仿真平台建立了燃油系统热动态仿真,该模型可以模拟出全飞行剖面下燃油回路各个节点的温度,通过改变不同的条件得到影响燃油系统各个节点温度的主要影响因素,并通过机器学习模型对燃油系统的温度进行预测。研究成果可以估计和感知燃油系统的工作温度及飞机液压、滑油等系统的工作温度,为进一步进行燃油液压系统的热边界感知和机载液压与机电系统热载荷吸收控制打下基础。
Abstract:Through simulation experiments and machine learning, this paper studies the main factors that affect the temperature in aircraft fuel systems and predicts the temperature of the fuel system. The basic structure and layout of aircraft fuel system were determined. A simulation model was established using the Simulink simulation platform to simulate the temperature of each node of the fuel circuit with full flight profile, and the main factors affecting the temperature of each node of the fuel system were obtained by changing different conditions. The temperature of the fuel system was predicted through a machine learning model. This research can estimate and perceive the operating temperature of fuel system, aircraft hydraulic system and lubricating oil system, which lays a foundation for further sensing the thermal boundary of fuel hydraulic system and controlling the thermal load absorption of airborne hydraulic and electromechanical systems.
-
表 1 输入变量属性及编号
Table 1. Input variables attributes and numbers
特征范畴 特征属性 编号 环境信息 飞行高度 1 飞行速度 2 飞行状态 燃油箱内燃油质量 3~7 燃油系统流量 8、9 增压泵功率 10 换热器功率 11 历史温度 供油箱历史温度 12~14 增压泵历史温度 15~17 末级换热器(9号位置)历史温度 18~20 -
[1] MORRIS R, MILLER J, LIMAYE S. Fuel deoxygenation and aircraft thermal management[C]//4th International Energy Conversion Engineering Conference and Exhibit (IECEC), 2006. [2] BODIE M, RUSSELL G, MCCARTHY K, et al. Thermal analysis of an integrated aircraft model: AIAA 2010-288[R]. Reston: AIAA, 2010. [3] GERMAN B J, DASKILEWICZ M J, DOTY J H. Using interactive visualizations to assess aircraft thermal management system modeling approaches: AIAA 2011-7060[R]. Reston: AIAA, 2011. [4] KIM J, KWON K, ROY S, et al. Megawatt-class turboelectric distributed propulsion, power, and thermal systems for aircraft[C]//2018 AIAA Aerospace Sciences Meeting. Reston: AIAA, 2018. [5] OLCUCUOGLU B, SARACOGLU B H. A preliminary heat transfer analysis of pulse detonation engines[J]. Transportation Research Procedia, 2018, 29: 279-288. [6] HUANG G P, DOMAN D B, DESIMIO M P, et al. Dimensional analysis, modeling, and experimental validation of an aircraft fuel thermal management system[J]. Journal of Thermophysics and Heat Transfer, 2019, 33(4): 1-11. [7] PINHEIRO N, SANDOVAL GÓES L. Modeling and simulation of a single engine aircraft fuel system[C]//15th Scandinavian International Conference on Fluid Power, 2017: 45-50. [8] 胡晓辰. 基于MATLAB仿真平台的动力与热管理系统建模及性能分析[D]. 南京: 南京航空航天大学, 2017: 20-25.HU X C. Modeling and performance analysis of power thermal management system based on MATLAB simulation platform[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017: 20-25(in Chinese). [9] RHEAUME J, LENTS C E. Design and simulation of a commercial hybrid electric aircraft thermal management system[C]//2018 AIAA/IEEE Electric Aircraft Technologies Symposium. Piscataway: IEEE Press, 2018. [10] PENG H, BAI X L. Artificial neural network-based machine learning approach to improve orbit prediction accuracy[C]//Space Flight Mechanics Meeting, 2018. [11] ALYANAK E J, ALLISON D L. Fuel thermal management system consideration in conceptual design sizing[C]//57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2016. [12] MANGORTEY E, GILLERON J, DARD G, et al. Development of a data fusion framework to support the analysis of aviation big data[C]//AIAA Scitech 2019 Forum. Reston: AIAA, 2019. [13] 曹连华, 庄达民, 宁纯利, 等. 战斗机燃油系统流体网络的数值计算[J]. 飞机设计, 2002(4): 37-41.CAO L H, ZHUANG D M, NING C L, et al. Numerical calculation of fluid network system of fighter[J]. Aircraft Desigin, 2002(4): 37-41(in Chinese). [14] DOMAN D B. Fuel flow control for extending aircraft thermal endurance. Part I: Underlying principles[C]//AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2015. [15] ROBERTS R, EASTBOURN S, MASER A. Generic aircraft thermal tip-to-tail modeling and simulation[C]//AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2011. 期刊类型引用(5)
1. 李媛媛,田甜,陈文焕,马一巍,赵磊,耿涛. 结构调制型长周期光纤光栅温度传感器研究. 航空科学技术. 2024(04): 67-73 . 百度学术
2. 甘发金,王朝阳,闫东,温占永. 长航时无人机燃油温度仿真及分析. 现代机械. 2024(03): 7-12 . 百度学术
3. 魏宇豪,葛玉雪,赵倩,裴扬. 双油箱燃油热管理系统性能分析. 航空学报. 2024(14): 235-246 . 百度学术
4. 佘士严,徐云山,赵辉,郭玉强. 面向系统工程的直升机燃油系统仿真验证. 中国新技术新产品. 2023(03): 15-19 . 百度学术
5. 王赵蕊佳,郝毓雅. 飞机油箱燃油热分析及可燃性分析. 现代机械. 2022(04): 68-72+99 . 百度学术
其他类型引用(2)
-