留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Gaussian-Hermite矩旋转不变矩的构建

张朝鑫 席平 胡毕富

张朝鑫, 席平, 胡毕富等 . Gaussian-Hermite矩旋转不变矩的构建[J]. 北京航空航天大学学报, 2014, 40(11): 1602-1608. doi: 10.13700/j.bh.1001-5965.2013.0677
引用本文: 张朝鑫, 席平, 胡毕富等 . Gaussian-Hermite矩旋转不变矩的构建[J]. 北京航空航天大学学报, 2014, 40(11): 1602-1608. doi: 10.13700/j.bh.1001-5965.2013.0677
Zhang Chaoxin, Xi Ping, Hu Bifuet al. Construction of invariants of Gaussian-Hermite moments[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(11): 1602-1608. doi: 10.13700/j.bh.1001-5965.2013.0677(in Chinese)
Citation: Zhang Chaoxin, Xi Ping, Hu Bifuet al. Construction of invariants of Gaussian-Hermite moments[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(11): 1602-1608. doi: 10.13700/j.bh.1001-5965.2013.0677(in Chinese)

Gaussian-Hermite矩旋转不变矩的构建

doi: 10.13700/j.bh.1001-5965.2013.0677
详细信息
    作者简介:

    张朝鑫(1986-),男,福建尤溪人,博士生,jorsoncy@126.com.

  • 中图分类号: TP391.4

Construction of invariants of Gaussian-Hermite moments

  • 摘要: 矩及矩的方程因其较强的表述图像特征的能力在图像处理与模式识别中有着广泛的应用,但目前基于具有正交性质的Gaussian-Hermite矩的研究还比较有限.针对Gaussian-Hermite矩进行深入的研究,将其推广到极坐标下复数空间中,提出Polar-Gaussian-Hermite矩;给出利用升降算符计算矩的方程的方法;并利用极坐标下复数空间中的优势,以及它们之间的一一对应关系,推导Gaussian-Hermite矩的旋转不变矩,并给出其旋转不变矩的独立与完备集.实验结果验证所提出的旋转不变矩的正确性,以及良好的数字稳健性.

     

  • [1] Xiao B,Ma J F,Cui J T.Combined blur, translation,scale and rotation invariant image recognition by Radon and pseudo-Fourier-Mellin transforms[J].Pattern Recognition,2012,45(1):314-321
    [2] Papakostas G A,Koulouriotis D E,Karakasis E G,et al.Moment-based local binary patterns:a novel descriptor for invariant pattern recognition applications[J].Neurocomputing,2013,99:358-371
    [3] Yang J,Xie S,Yoon S,et al.Fingerprint matching based on extreme learning machine [J].Neural Computing and Applications, 2013,22(3/4):435-445
    [4] Hu M K.Visual pattern recognition by moment invariants[J].IRE Transactions on Information Theory,1962,8(2):179-187
    [5] Teague M R.Image analysis via the general theory of moments[J].Optical Society of America,1980,70(8):920-930
    [6] Abu-Mostafa Y S,Psaltis D.Image normalization by complex moments[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1985,PAMI-7(1):46-55
    [7] Shen J.Orthogonal Gaussian-Hermite moments for image characterization[C]//Proceedings of SPIE-The International Society for Optical Engineering.Bellingham WA:SPIE,1997:224-233
    [8] Mukundan R,Ong S,Lee P A.Image analysis by Tchebichef moments[J].IEEE Transactions on Image Processing,2001,10(9):1357-1364
    [9] Yap P T,Paramesran R,Ong S H.Image analysis by Krawtchouk moments[J].IEEE Transactions on Image Processing,2003,12(11):1367-1377
    [10] Zhu H,Shu H,Liang J,et al.Image analysis by discrete orthogonal Racah moments[J].Signal Processing,2007,87(4):687-708
    [11] Zhu H Q,Shu H Z,Zhou J,et al.Image analysis by discrete orthogonal dual Hahn moments[J].Pattern Recognition Letters,2007,28(13):1688-1704
    [12] Zhang C X,Xi P,Dai M.Gaussian-geometric moments and its application in feature matching[J].Advanced Materials Research,2013,718-720:2113-2119
    [13] Mangin J F,Poupon F,Rivière D,et al.3D moment invariant based morphometry[J].Lecture Notes in Computer Science,2003,2879(Part2):505-512
    [14] Flusser J.On the independence of rotation moment invariants[J].Pattern Recognition,2000,33(9):1405-1410
    [15] Suk T,Flusser J.Affine moment invariants generated by graph method[J].Pattern Recognition,2011,44(9):2047-2056
    [16] Chong C W,Raveendran P,Mukundan R.Translation invariants of Zernike moments[J].Pattern Recognition,2003,36(8):1765-1773
    [17] Chong C W,Raveendran P,Mukundan R.Translation and scale invariants of Legendre moments[J].Pattern Recognition,2004,37(1):119-129
    [18] Zhu H,Shu H,Xia T,et al.Translation and scale invariants of Tchebichef moments[J].Pattern Recognition,2007,40(9):2530-2542
    [19] Yang B,Li G,Zhang H,et al.Rotation and translation invariants of Gaussian-Hermite moments[J].Pattern Recognition Letters,2011,32(9):1283-1298
    [20] Refregier A.Shapelets-I:a method for image analysis[J].Monthly Notices of the Royal Astronomical Society,2003,338(1):35-47

  • 加载中
计量
  • 文章访问数:  1309
  • HTML全文浏览量:  128
  • PDF下载量:  937
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-22
  • 网络出版日期:  2014-11-20

目录

    /

    返回文章
    返回
    常见问答