留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

夹持边界条件下表面裂纹应力强度因子求解

曹淑森 贺小帆 杨博霄 刘文珽

曹淑森, 贺小帆, 杨博霄, 等 . 夹持边界条件下表面裂纹应力强度因子求解[J]. 北京航空航天大学学报, 2014, 40(11): 1637-1642. doi: 10.13700/j.bh.1001-5965.2013.0717
引用本文: 曹淑森, 贺小帆, 杨博霄, 等 . 夹持边界条件下表面裂纹应力强度因子求解[J]. 北京航空航天大学学报, 2014, 40(11): 1637-1642. doi: 10.13700/j.bh.1001-5965.2013.0717
Cao Shusen, He Xiaofan, Yang Boxiao, et al. Solution of stress intensity factor of surface cracked geometry with clamped ends[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(11): 1637-1642. doi: 10.13700/j.bh.1001-5965.2013.0717(in Chinese)
Citation: Cao Shusen, He Xiaofan, Yang Boxiao, et al. Solution of stress intensity factor of surface cracked geometry with clamped ends[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(11): 1637-1642. doi: 10.13700/j.bh.1001-5965.2013.0717(in Chinese)

夹持边界条件下表面裂纹应力强度因子求解

doi: 10.13700/j.bh.1001-5965.2013.0717
详细信息
    作者简介:

    曹淑森(1991-),男,山东沂水人,硕士生,sy1305102@ase.buaa.edu.cn

    通讯作者:

    贺小帆

  • 中图分类号: V215.5

Solution of stress intensity factor of surface cracked geometry with clamped ends

  • 摘要: 为了进行试验室条件下表面裂纹扩展行为研究,需要进行试验机夹持边界条件下的表面裂纹应力强度因子求解.通过对夹持特点的分析,将其等效为均匀拉伸和弯矩的共同作用,并使得试件端部转角为0°.以自由均匀拉伸和纯弯载荷作用下表面裂纹应力强度因子解的Newman-Raju公式为基础,计算得到了等效模型弹性位能表达式,应用卡氏第一定理求得了弯矩与拉伸载荷的关系,采用叠加原理得到了夹持边界条件下表面裂纹应力强度因子解.为了验证解的适用性,采用Abaqus软件计算得到夹持边界条件下若干典型表面裂纹的应力强度因子数值解,对比表明了提出的应力强度因子解法是足够精确的.随后探讨了裂纹形状、试件长厚比等对夹持边界条件下应力强度因子修正因子的影响规律.

     

  • [1] 郭万林,于培师.构件三维断裂与疲劳力学及其在航空工程中的应用[J].固体力学学报,2010(5):553-571 Guo Wanlin,Yu Peishi.Three dimensional fracture and fatigue mechanics of structures and its application in aeronautical engineering[J].Chinese Journal of Aeronautics,2010(5):553-571(in Chinese)
    [2] 郭万林.复杂环境下的三维疲劳断裂[J].航空学报,2002,23(3):215-220 Guo Wanlin.Three dimensional fatigue fracture in complex environment[J].Acta Aeronautica et Astronautica Sinica,2002,23(3):215-220(in Chinese)
    [3] Newman Jr J C,Raju I S.An empirical stress-intensity factor equation for the surface crack[J].Engineering Fracture Mechanics,1981,15(1):185-192
    [4] Fett T.Estimation of stress intensity factors for semi-elliptical surface cracks[J].Engineering Fracture Mechanics,2000,66(4):349-356
    [5] Wang X,Lambert S B.Stress intensity factors for low aspect ratio semi-elliptical surface cracks in finite-thickness plates subjected to nonuniform stresses[J].Engineering Fracture Mechanics,1995,51(4):517-532
    [6] Wang X,Lambert S B.Stress intensity factors and weight functions for high aspect ratio semi-elliptical surface cracks in finite-thickness plates[J].Engineering Fracture Mechanics,1997,57(1):13-24
    [7] Wang X,Lambert S B.Semi-elliptical surface cracks in finite-thickness plates with built-in ends.I.Stress intensity factor solutions[J].Engineering Fracture Mechanics,2001,68(16):1723-1741
    [8] Wang X,Lambert S B.Semi-elliptical surface cracks in finite-thickness plates with built-in ends.II.Weight function solutions[J].Engineering Fracture Mechanics,2001,68(16):1743-1754
    [9] John R,Rigling B.Effect of height to width ratio on K and CMOD solutions for a single edge cracked geometry with clamped ends[J].Engineering Fracture Mechanics,1998,60(2):147-156
    [10] John R,Kaldon S G,Johnson D A,et al.Weight function for a single edge cracked geometry with clamped ends[J].International Journal of Fracture,1985,72(2):145-158
    [11] Blatt D,John R,Coker D.Stress intensity factor and compliance solutions for a single edge notched specimen with clamped ends[J].Engineering Fracture Mechanics,1994,47(4):521-532
    [12] Jones I S.A wide range weight function for a single edge cracked geometry with clamped ends[J].Ineternational Journal of Fracture,1998,89(1):1-18
    [13] 单辉祖.材料力学(II)[M].3版.北京:高等教育出版社,2009:35-71 Shan Huizu.Mechanics of materials(II)[M].3rd ed.Beijng:Higher Education Press,2009:35-71(in Chinese)
    [14] 吴志学.表面裂纹疲劳扩展的数值模拟(II)[J].应用力学学报,2007,24(1):42-46 Wu Zhixue.Numercal simulation to surface crack fatigue growth(II)[J].Chinese Journal of Applied Mechanics,2007,24(1):42-46(in Chinese)
    [15] 张行.断裂力学[M].北京:宇航出版社,1990:164-169 Zhang Xing.Fracture mechanics[M].Beijing:Aerospace Press,1990:164-169(in Chinese)
    [16] 林晓斌,Smith R A.应用三维有限单元法计算应力强度因子[J].中国机械工程,1998,9(11):39-42 Lin Xiaobin,Smith R A.Calculation of stress intensity factors using the 3D finite element method[J].China Mechanical Engineering,1998,9(11):39-42(in Chinese)

  • 加载中
计量
  • 文章访问数:  1419
  • HTML全文浏览量:  192
  • PDF下载量:  60828
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-06
  • 网络出版日期:  2014-11-20

目录

    /

    返回文章
    返回
    常见问答