留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于视频数据的机场跑道外来物检测

陈唯实 李敬

陈唯实, 李敬. 基于视频数据的机场跑道外来物检测[J]. 北京航空航天大学学报, 2014, 40(12): 1678-1684. doi: 10.13700/j.bh.1001-5965.2013.0762
引用本文: 陈唯实, 李敬. 基于视频数据的机场跑道外来物检测[J]. 北京航空航天大学学报, 2014, 40(12): 1678-1684. doi: 10.13700/j.bh.1001-5965.2013.0762
Chen Weishi, Li Jing. Foreign object debris detection for airport runway with video data[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(12): 1678-1684. doi: 10.13700/j.bh.1001-5965.2013.0762(in Chinese)
Citation: Chen Weishi, Li Jing. Foreign object debris detection for airport runway with video data[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(12): 1678-1684. doi: 10.13700/j.bh.1001-5965.2013.0762(in Chinese)

基于视频数据的机场跑道外来物检测

doi: 10.13700/j.bh.1001-5965.2013.0762
基金项目: 民航安全能力建设资金项目(142146903033)
详细信息
    作者简介:

    陈唯实(1982-),男,天津人,高级工程师,chenwsh@mail.castc.org.cn.

  • 中图分类号: TP751.1

Foreign object debris detection for airport runway with video data

  • 摘要: 提出了一种基于视频数据的机场跑道外来物(FOD,Foreign Object Debris)检测算法,该算法包括几何校正、背景差分、杂波抑制和伪装消除等4个步骤.其中,几何校正排除了摄像头轻微抖动造成的图像差异;背景差分利用每个像素对应的颜色向量信息,建立背景模型并进行定时更新;杂波抑制和伪装消除利用差分图像和原始图像信息,建立马尔科夫随机场和概率统计模型,在降低虚警的同时提高了检测率.将本算法应用于两组不同光照条件下获取的视频图像,检测不同形状和颜色的FOD目标;采用本算法对机场实测数据进行测试,验证了算法的有效性.

     

  • [1] NAS-412 REV.1 Foreign object damage/foreign object debris(FOD) prevention[S]
    [2] Patterson Jr J.Foreign object debris(FOD)detection research[J].International Airport Review,2008,11(2):22-27
    [3] FAA AC:150/5220-24 Airport foreign object debris (FOD) detection equipment[S]
    [4] 李煜,肖刚.机场跑道异物检测系统设计与研究[J].激光与红外,2011,41(8):909-915 Li Yu,Xiao Gang.Study and design on FOD detection and surveillance system for airport runway[J].Laser & Infrared,2011,41(8):909-915(in Chinese)
    [5] 樊曼劼.机场跑道异物检测研究[D].北京:北京交通大学,2011 Fan Manjie.Airport FOD detection research on runway[D].Beijing:Beijing Jiaotong University,2011(in Chinese)
    [6] Xu Q Y,Ning H S,Chen W S.Video-based foreign object debris detection[C]//Proceedings of IEEE International Workshop on Imaging Systems and Techniques.Piscataway,NJ:IEEE Comput- er Society,2009:123-126
    [7] Beasley P D L,Binns G,Hodges R D,et al.Tarsier®,a millimeter wave radar for airport runway debris detection[C]//Proceedings of European Radar Conference.Amsterdam:Horizon House Publishing Ltd,2004:261-264
    [8] Vogel B.An object lesson in finding FOD[J].Jane's Airport Review,2008,20(8):56-57
    [9] Radke R J,Andra S,Al-Kofahi O,et al.Image change detection algorithm: a systematic survey[J].IEEE Transactions on Image Processing,2005,14(3):294-307
    [10] Zitova B,Flusser J.Image registration methods:a survey[J].Image and Vision Computing,2003,21(11):977-1000
    [11] Haines T S F,Xiang T.Background subtraction with dirichlet processes[C]//Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).Heidelberg:Springer Verlag,2012,7575 LNCS(PART 4):97-111
    [12] Diaz R,Hallman S,Fowlkes C.Detecting dynamic objects with multi-view background subtraction[C]//Proceedings of IEEE International Conference on Computer Vision (ICCV).Sydney:IEEE,2013:273-280
    [13] Shimada A,Nagahara H,Taniguchi R.Backgroundmodeling based on bidirectional analysis[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington D C:IEEE Computer Society,2013:1979-1986
    [14] Elgammal A,Duraiswami R,Harwood D,et al.Background and foreground modeling using nonparametric kernel density estimation for visual surveillance[J].Proceedings of the IEEE,2002,90(7):1151-1162
    [15] Barnich O,Van Droogenbroeck M.ViBe:auniversal background subtraction algorithm for video sequences[J].IEEE Transactions on Image Processing,2011,20(6):1709-1724
    [16] McHugh J,Konrad J,Saligrama V,et al.Foreground-adaptive background subtraction[J].IEEE Signal Processing Letters,2009,16(5):390-393

  • 加载中
计量
  • 文章访问数:  1563
  • HTML全文浏览量:  252
  • PDF下载量:  684
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-13
  • 网络出版日期:  2014-12-20

目录

    /

    返回文章
    返回
    常见问答