留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无自由参数型混合格式

王来 吴颂平

王来, 吴颂平. 无自由参数型混合格式[J]. 北京航空航天大学学报, 2015, 41(2): 318-322. doi: 10.13700/j.bh.1001-5965.2014.0134
引用本文: 王来, 吴颂平. 无自由参数型混合格式[J]. 北京航空航天大学学报, 2015, 41(2): 318-322. doi: 10.13700/j.bh.1001-5965.2014.0134
WANG Lai, WU Songping. Hybrid finite difference schemes without free parameters[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(2): 318-322. doi: 10.13700/j.bh.1001-5965.2014.0134(in Chinese)
Citation: WANG Lai, WU Songping. Hybrid finite difference schemes without free parameters[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(2): 318-322. doi: 10.13700/j.bh.1001-5965.2014.0134(in Chinese)

无自由参数型混合格式

doi: 10.13700/j.bh.1001-5965.2014.0134
基金项目: NSFC重大研究计划重点项目(91016006)
详细信息
    作者简介:

    王来(1991—), 男, 湖北潜江人, 硕士生, wanglaideyx@163.com

    通讯作者:

    吴颂平(1955—), 男, 天津人, 教授, wusping825@163.com, 主要研究方向为高超声速化学非平衡流、可压缩流数值模拟、有限元方法等.

  • 中图分类号: V211.3

Hybrid finite difference schemes without free parameters

  • 摘要: 针对紧致-加权本质无振荡混合格式中子格式的权重,设计了新的算子.该算子利用模板的光滑因子求解权重,避免引入自由参数,提高了格式的易用性和鲁棒性.利用新的权重算子,分别将两种五阶迎风紧致格式与WENO-Z(Weighted Essentially Non-Oscillatory Scheme)耦合.新权重算子使子格式之间的切换较为光滑.WENO-Z能够保持格式在极点附近的精度,紧致格式在光滑区域耗散低,混合格式因此能够保持高分辨率、高精度特性以及对间断的捕捉能力.数值试验针对若干双曲型方程算例展开,比较了两种混合格式在采用新权重算子与采用其他典型算子时的数值特性.结果表明无自由参数型权重算子性能良好.

     

  • [1] Wang Z J, Fidkowski K,Abgrall R,et al.High-order CFD methods:current status and perspective[J].Interntional Journal for Numerical Methods in Fluids,2012,72(8):811-845.
    [2] 阎超,于剑, 徐晶磊,等.CFD模拟方法的发展成就与展望[J].力学进展,2011,41(5):562-589. Yan C,Yu J,Xu J L,et al.On the achievements and prospects for the methods of the computational fluid dynamics[J].Advances in Mechanics,2011,41(5):562-589(in Chinese).
    [3] Harten A,Osher S. Uniformaly high order accurate essentially nonoscillatory scheme,Ⅲ[J].Journal of Computational Physics,1987,71(2):231-303.
    [4] Shu C W, Osher S.Efficient implementation of essentially non-oscillatory shock-capturing schemes[J].Journal of Computational Physics,1988,77(2):439-471.
    [5] Borges R, Carmona M,Costa B,et al.An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws[J].Journal of Computational Physics,2008,227(6):3191- 3211.
    [6] Henrick A K, Aslam T D,Powers J M.Mapped weighted essentially non-oscillatory schemes:achieving optimal order near critical points[J].Journal of Computational Physics,2005,207(2):542-567.
    [7] Castro M, Costa B,Don W S.High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws[J].Journal of Computational Physics,2011,230(5):1766-1792
    [8] Lele S K. Compact finite difference schemes with spectral-like resolution[J].Journal of Computational Physics,1992,103(1):16-42.
    [9] Liu X L, Zhang S H, Zhang H X,et al.A new class of central compact schemes with spectral-like resolution Ⅰ :linear schemes[J].Journal of Computational Physics,248(1):235-256.
    [10] Adams N A, Shariff K.A high-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems[J].Journal of Computational Physics,1996,127(1):27-51.
    [11] Pirozzoli S. Conservative hybrid compact-WENO schemes for shock-turbulence interaction[J].Journal of Computational Physics,2002,178(1):81-117.
    [12] Ren Y X, Liu M E,Zhang H X.A characteristic-wise hybrid compact-WENO scheme for solving hyperbolic conservation laws[J]. Journal of Computational Physics,2003,192(2):365-386.
    [13] Yu J, Yan C,Jiang Z H.A high resolution low dissipation hybrid scheme for compressible flows[J].Chinese Journal of Aeronautics,2011,24(4):417-424.
    [14] 武从海,赵宁, 田琳琳.一种改进的紧致WENO混合格式[J].空气动力学报,2013,31(4):477-481. Wu C H,Zhao N,Tian L L.An improved hybrid cmpact-WENO scheme[J].Acta Aero Dynamica Sinica,2013,31(4):417-481(in Chinese).
    [15] Shen Y Q, Zha G C.Generalized finite compact difference scheme for shock/complex flowfield interaction[J].Journal of Computational Physics,2011,230(12):4419-4436.

  • 加载中
计量
  • 文章访问数:  1109
  • HTML全文浏览量:  80
  • PDF下载量:  780
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-20
  • 网络出版日期:  2015-02-20

目录

    /

    返回文章
    返回
    常见问答