Building areas extraction basing on MSER in unmanned aerial vehicle images
-
摘要: 对建筑区域自动检测与提取是无人机(UAV,Unmanned Aerial Vehicle)图像处理的一项重要功能.在分析无人机成像特点和最大稳定极值区域(MSER,Maximum Stable Extremal Regions)算法对无人机侦察图像建筑区域检测的适用性基础上,提出了一种基于MSER的无人机侦察图像建筑区域提取算法.算法包含5步:无人机图像预处理,运用MSER算法分析计算图像稳定区域,通过计算稳定区域密度筛选建筑区域,进一步利用自适应K均值聚类算法对建筑区进行划分,最后采用Graham算法生成建筑区的边界从而实现了建筑区的自动提取.选取无人机实飞图像数据进行实验统计,本算法提取精度为92.25%;同时与基于Gabor变换的纹理特征、SIFT特征点的提取算法相比,建筑区域提取时间缩短,满足无人机实时应用需求.Abstract: Automatic detection and extraction of the building area is an important aspect of unmanned aerial vehicle (UAV) image processing. Based on the detailed analysis of UAV imaging characteristics and the maximum stable extremal regions (MSER) algorithm, a building area extraction algorithm of UAV image is proposed. The algorithm consists of five steps: firstly, the pretreatment of UAV image; secondly, analysis and calculation of image stable regions using MSER; thirdly, screening the building area by calculating the density of stable regions; then, using adaptive K-means clustering algorithm to divide the building area; ultimately, boundaries of the building area were generated using Graham algorithm in order to achieve automatic extraction of building area. Using the UAV real flying image data to do the experiment statistics, the conclusion includes: Firstly, the extraction accuracy of this algorithm reaches 92.25%; secondly, when compared with other building area extraction algorithm which based on Gabor transform or SIFT, the extraction time of building area is shortened and meets the needs of UAV real-time applications.
-
[1] 刘海飞, 常庆瑞,李粉玲.高分辨率影像城区建筑物提取研究[J].西北农林科技大学学报:自然科学版,2013,41(10):221-227. Liu H F,Chang Q R,Li F L.Urban building extraction of high-resolution images[J].Northwest Agriculture and Forestry University of Science and Technology:Natural Science Edition,2013,41(10):221-227(in Chinese). [2] Tao C, Tan Y H,Yu J G,et al.Urban area detection using multiple Kernel Learning and graph cut[C]//2012 32nd IEEE International Geoscience and Remote Sensing Symposium.Piscataway,NJ:IEEE,2012:83-86. [3] Sirmacek B, Unsalan C.Urban-area and building detection using SIFT keypoints and graph theory[J].Geoscience and Remote Sensing,IEEE Transactions on,2009,47(4):1156-1167. [4] 张立民,张建廷, 徐涛.基于对象的最优尺度建筑物信息提取方法[J].计算机应用研究,2012,29(12):4789-4792. Zhang L M,Zhang J T,Xu T.Object-based of optimal scale building information extraction method[J].Application Research of Computers,2012,29(12):4789-4792(in Chinese). [5] 黄金库,冯险峰, 徐秀莉,等.基于知识规则构建和形态学修复的建筑物提取研究[J].地理与地理信息科学,2011,27(4): 28-31. Huang J K,Feng X F,Xu X L,et al.Building extraction based on knowledge rule and morphological restoration[J].Geography and Geo-Information Science,2011,27(4):28-31(in Chinese). [6] 杨萍,姜志国, 刘滨涛.一种遥感图像建筑物检测新方法[J].航天返回与遥感,2013,34(5):70-77. Yang P,Jiang Z G,Liu B T.A new building detection method in remote sensing image[J].Aerospace & Remote Sensing,2013,34(5):70-77(in Chinese). [7] Sirmacek B, Unsalan C.Urban area detection using local feature points and spatial voting[J].IEEE Geoscience and Remote Sensing Letters,2010,7(1):146-150. [8] 谷多玉,郭江, 李书晓,等.基于Gabor滤波器的航空图像居民区域提取[J].北京航空航天大学学报,2012,38(1):106-110. Gu D Y,Guo J,Li S X,et al.Resident region extraction using Gabor filter in aerial imagery[J].Journal of Beijing University of Aeronautics and Astronautics,2012,38(1):106-110(in Chinese). [9] Matas J, Chum O,Urban M,et al.Robust wide-baseline stereo from maximally stable extremal regions[J].Image and Vision Computing,2004,22(10):761-767. [10] Mikolajczyk K, Tuytelaars T,Schmid C,et al.A comparison of affine region detectors[J].International Journal of Computer Vision,2005,65(1-2):43-72. [11] 王永明,王贵锦. 图像局部不变性特征与描述[M].北京:国防工业出版社,2010:102-127. Wang Y M,Wang G J.Image local invariant features and description[M].Beijing:Defense Industry Press,2010:102-127(in Chinese). [12] Murphy-Chutorian E, Trivedi M.N-tree disjoint-set forests for maximally stable extremal regions[C]//2006 17th British Machine Vision Conference.Edinburgh,United Kingdom:British Machine Vision Association,2006:739-748. [13] Mikolajczyk K, Schmid C.A performance evaluation of local descriptors[J].Pattern Analysis and Machine Intelligence,IEEE Transactions on,2005,27(10):1615-1630. [14] MacQueen J. Some methods for classification and analysis of multivariate observations[C]//Proceedings of the fifth Berkeley Symposium on Mathematical Statistics and Probability.Berkeley,California:University of California Press,1967:281-297. [15] Graham R L. An efficient algorithm for determining the convex hull of a finite planar set[J].Information Processing Letters,1972,1(4):132-133.
点击查看大图
计量
- 文章访问数: 1450
- HTML全文浏览量: 205
- PDF下载量: 41780
- 被引次数: 0