留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于IFA-ELM的航空发动机自适应PID控制新方法

焦洋 李秋红 李业波

焦洋, 李秋红, 李业波等 . 基于IFA-ELM的航空发动机自适应PID控制新方法[J]. 北京航空航天大学学报, 2015, 41(3): 530-537. doi: 10.13700/j.bh.1001-5965.2014.0182
引用本文: 焦洋, 李秋红, 李业波等 . 基于IFA-ELM的航空发动机自适应PID控制新方法[J]. 北京航空航天大学学报, 2015, 41(3): 530-537. doi: 10.13700/j.bh.1001-5965.2014.0182
JIAO Yang, LI Qiuhong, LI Yeboet al. New adaptive PID control method based on IFA-ELM for aero-engine[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(3): 530-537. doi: 10.13700/j.bh.1001-5965.2014.0182(in Chinese)
Citation: JIAO Yang, LI Qiuhong, LI Yeboet al. New adaptive PID control method based on IFA-ELM for aero-engine[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(3): 530-537. doi: 10.13700/j.bh.1001-5965.2014.0182(in Chinese)

基于IFA-ELM的航空发动机自适应PID控制新方法

doi: 10.13700/j.bh.1001-5965.2014.0182
详细信息
    作者简介:

    焦洋(1991—),男,河北秦皇岛人,硕士生,jy13661155288@163.com

    通讯作者:

    李秋红(1972—),女,辽宁葫芦岛人,副教授,lqh203@nuaa.edu.cn,研究方向为航空发动机建模、控制与故障诊断.

  • 中图分类号: V233.7

New adaptive PID control method based on IFA-ELM for aero-engine

  • 摘要: 针对大涵道比涡扇发动机强非线性、变参数的特点,提出了一种基于优化极端学习机(ELM)对发动机参数进行预测的自适应PID控制方法.为提高ELM的预测精度和实时性,采用适用于多峰值寻优的改进萤火虫算法(IFA)优化ELM网络参数,形成优化的ELM训练方法IFA-ELM.该算法在保证预测精度的前提下,有效简化了网络规模,并提高了其泛化能力.利用该算法建立发动机风扇转速预测模型,基于该模型,采用梯度下降法在线调整PID参数,提升发动机动态性能.数字仿真验证表明,与常规PID控制相比,基于IFA-ELM的自适应PID法调节时间减少了0.2~1.4s,超调量降低了0.2%~1.5%,验证了该控制方法的有效性.

     

  • [1] Milhim A B. Modeling and fault tolerant PID control of a quad-rotor UAV[D].Montreal:Concordia University,2010.
    [2] 殷锴,陶金伟, 王鸿钧,等.民用航空发动机控制系统回路设计与仿真[J].航空计算技术,2013,42(6):107-110. Yin K,Tao J W,Wang H J,et al.Closed-loop design and simulation of civil aero-engine control system[J].Aeronautical Computing Technique,2013,42(6):107-110(in Chinese).
    [3] 乔伯真,缑林峰. 模糊自整定PID的航空发动机转速控制研究[J].计算机仿真,2013(4):63-67. Qiao B Z,Hou L F.Rotating speed control for aero-engine based on fuzzy self-tuning PID controller[J].Computer Simulation,2013(4):63-67(in Chinese).
    [4] 李述清,张胜修, 刘毅男.航空发动机全包线最优PID控制器设计[J].弹箭与制导学报,2011,31(4):105-107. Li S Q,Zhang X S,Liu Y N.Neural network based on optimal PID controller over whole envelope for an aero-engine[J].Journal of Projectiles,Rockets,Missiles and Guidance,2011,31(4):105-107 (in Chinese).
    [5] 赵俊,陈建军,王灵刚. 航空发动机的智能神经网络自适应控制研究[J].航空动力学报,2008,23(10):1913-1920. Zhao J,Chen J J,Wang L G.New intelligent neural network ada-ptive control scheme research for aero-engine[J].Journal of Aerospace Power,2008,23(10):1913-1920(in Chinese).
    [6] Huang G B, Ding X,Zhou H.Optimization method based extreme learning machine for classification[J].Neurocomputing,2010,74(1):155-163.
    [7] Suresh S, Saraswathi S,Sundararajan N.Performance enhancement of extreme learning machine for multi-category sparse data classification problems[J].Engineering Applications of Artificial Intelligence,2010,23(7):1149-1157.
    [8] Liu N,Wang H. Ensemble based extreme learning machine[J].IEEE Signal Processing Letters,2010,17(8):754-757.
    [9] 李雪梅,张素琴. 基于仿生理论的几种优化算法综述[J].计算机应用研究,2009,26(6):2032-2034. Li X M,Zhang S Q.Overview of some optimization algorithm based on bionic theory[J].Application Research of Computers,2009,26(6):2032-2034(in Chinese).
    [10] Zang H, Zhang S,Hapeshi K.A review of nature-inspired algorithms[J].Journal of Bionic Engineering,2010,7(Supplement):S232-S237.
    [11] Yang X S. Nature-inspired metaheuristic algorithms[M].Beckington:Luniver Press,2010:81-89.
    [12] Yang X S. Firefly algorithms for multimodal optimization[M].Heidelberg,Berlin:Springer,2009:169-178.
    [13] Silva D N G, Pacifico L D S,Ludermir T B.An evolutionary extreme learning machine based on group search optimization[C]//Proceeding of 2011 IEEE Congress on Evolutionary Computation.Paris:IEEE,2011:574-580.
    [14] Richter H, Singaraju A V,Litt J S.Multiplexed predictive control of a large commercial turbofan engine[J].Journal of Guidance,Control,and Dynamics,2008,31(2):273-281.
    [15] 李秋红,许光华, 孙健国.航空发动机小波神经网络PID控制[J].航空动力学报,2009,24(4):875-879. Li Q H,Xu G H,Sun J G.Aero-engine wavelet neural network PID control[J].Journal of Aerospace Power,2009,24(4):875-879(in Chinese).
  • 加载中
计量
  • 文章访问数:  1236
  • HTML全文浏览量:  92
  • PDF下载量:  556
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-03
  • 网络出版日期:  2015-03-20

目录

    /

    返回文章
    返回
    常见问答