New adaptive PID control method based on IFA-ELM for aero-engine
-
摘要: 针对大涵道比涡扇发动机强非线性、变参数的特点,提出了一种基于优化极端学习机(ELM)对发动机参数进行预测的自适应PID控制方法.为提高ELM的预测精度和实时性,采用适用于多峰值寻优的改进萤火虫算法(IFA)优化ELM网络参数,形成优化的ELM训练方法IFA-ELM.该算法在保证预测精度的前提下,有效简化了网络规模,并提高了其泛化能力.利用该算法建立发动机风扇转速预测模型,基于该模型,采用梯度下降法在线调整PID参数,提升发动机动态性能.数字仿真验证表明,与常规PID控制相比,基于IFA-ELM的自适应PID法调节时间减少了0.2~1.4s,超调量降低了0.2%~1.5%,验证了该控制方法的有效性.Abstract: For the strong nonlinear and variable parameters properties of high bypass ratio turbofan engine, an adaptive PID control method based on optimized extreme learning machine (ELM) was proposed to predict the engine's parameters. To improve the prediction accuracy and the real-time property of ELM, an improved Firefly algorithm (IFA) for multi-peak optimization was adopted to optimize the network parameters of the ELM, and formed an optimized ELM training method IFA-ELM. Under the premise of ensuring prediction accuracy, the algorithm effectively simplified the network scale and improved its generalization capability. The engine fan speed prediction model was built by this algorithm, and gradient descent method was adopted to adjust the PID parameters online based on the model to improve the dynamic performance of engine. Digital simulation results show that compared with conventional PID control, IFA-ELM based adaptive PID method shortens the settling time by 0.2~1.4s, and reduces the overshoot by 0.2%~1.5%, which demonstrates the effectiveness of the proposed control method.
-
Key words:
- aero-engine /
- PID /
- extreme learning machine /
- Firefly algorithm /
- adaptive control
-
[1] Milhim A B. Modeling and fault tolerant PID control of a quad-rotor UAV[D].Montreal:Concordia University,2010. [2] 殷锴,陶金伟, 王鸿钧,等.民用航空发动机控制系统回路设计与仿真[J].航空计算技术,2013,42(6):107-110. Yin K,Tao J W,Wang H J,et al.Closed-loop design and simulation of civil aero-engine control system[J].Aeronautical Computing Technique,2013,42(6):107-110(in Chinese). [3] 乔伯真,缑林峰. 模糊自整定PID的航空发动机转速控制研究[J].计算机仿真,2013(4):63-67. Qiao B Z,Hou L F.Rotating speed control for aero-engine based on fuzzy self-tuning PID controller[J].Computer Simulation,2013(4):63-67(in Chinese). [4] 李述清,张胜修, 刘毅男.航空发动机全包线最优PID控制器设计[J].弹箭与制导学报,2011,31(4):105-107. Li S Q,Zhang X S,Liu Y N.Neural network based on optimal PID controller over whole envelope for an aero-engine[J].Journal of Projectiles,Rockets,Missiles and Guidance,2011,31(4):105-107 (in Chinese). [5] 赵俊,陈建军,王灵刚. 航空发动机的智能神经网络自适应控制研究[J].航空动力学报,2008,23(10):1913-1920. Zhao J,Chen J J,Wang L G.New intelligent neural network ada-ptive control scheme research for aero-engine[J].Journal of Aerospace Power,2008,23(10):1913-1920(in Chinese). [6] Huang G B, Ding X,Zhou H.Optimization method based extreme learning machine for classification[J].Neurocomputing,2010,74(1):155-163. [7] Suresh S, Saraswathi S,Sundararajan N.Performance enhancement of extreme learning machine for multi-category sparse data classification problems[J].Engineering Applications of Artificial Intelligence,2010,23(7):1149-1157. [8] Liu N,Wang H. Ensemble based extreme learning machine[J].IEEE Signal Processing Letters,2010,17(8):754-757. [9] 李雪梅,张素琴. 基于仿生理论的几种优化算法综述[J].计算机应用研究,2009,26(6):2032-2034. Li X M,Zhang S Q.Overview of some optimization algorithm based on bionic theory[J].Application Research of Computers,2009,26(6):2032-2034(in Chinese). [10] Zang H, Zhang S,Hapeshi K.A review of nature-inspired algorithms[J].Journal of Bionic Engineering,2010,7(Supplement):S232-S237. [11] Yang X S. Nature-inspired metaheuristic algorithms[M].Beckington:Luniver Press,2010:81-89. [12] Yang X S. Firefly algorithms for multimodal optimization[M].Heidelberg,Berlin:Springer,2009:169-178. [13] Silva D N G, Pacifico L D S,Ludermir T B.An evolutionary extreme learning machine based on group search optimization[C]//Proceeding of 2011 IEEE Congress on Evolutionary Computation.Paris:IEEE,2011:574-580. [14] Richter H, Singaraju A V,Litt J S.Multiplexed predictive control of a large commercial turbofan engine[J].Journal of Guidance,Control,and Dynamics,2008,31(2):273-281. [15] 李秋红,许光华, 孙健国.航空发动机小波神经网络PID控制[J].航空动力学报,2009,24(4):875-879. Li Q H,Xu G H,Sun J G.Aero-engine wavelet neural network PID control[J].Journal of Aerospace Power,2009,24(4):875-879(in Chinese).
点击查看大图
计量
- 文章访问数: 1236
- HTML全文浏览量: 92
- PDF下载量: 556
- 被引次数: 0