Grid generation criterions in hypersonic aeroheating computations
-
摘要: 首先对高超声速气动热数值模拟中的3种壁面法向网格准则(平均自由程(MFP)、自由来流参数网格雷诺数和壁面参数网格雷诺数准则)进行了分析.随后,提出了壁面参数预估方法,使得壁面参数网格雷诺数和MFP两种准则无需进行试算即可直接预估壁面法向网格尺度.其次,运用提出的壁面参数预估方法结合不同网格准则,在同一实验条件下确定多个壁面法向网格尺度,通过与实验数据对比研究各网格准则确定的壁面法向网格尺度是否满足热环境模拟精度要求,并对提出的壁面参数预估方法进行验证.最后,开展了高超声速二维完全气体及真实气体效应算例、三维钝双锥算例的数值模拟.研究表明,壁面参数预估方法是可靠的;自由来流参数网格雷诺数准则随来流静温变化所确定的网格尺度变化趋势与物理推理相悖;基于壁面参数网格雷诺数和MFP两种准则主要受壁面温度影响,其在同一条件下所确定的网格尺度基本一致,并满足热环境模拟的精度要求.Abstract: Three wall normal grid generation criterions in hypersonic aeroheating computations are analyzed, including mean free path (MFP), and cell Reynolds number based on freestream parameters and wall parameters respectively. A wall parameter prediction method is proposed to avoid trial computations when MFP and cell Reynolds number based on wall parameters criterions are used. The proposed method is utilized and combined with different grid generation criterions to generate several grids. A comparison with the experimental data is conducted to test if the wall normal mesh size determined by the grid criterions can satisfy the precision requirement of thermal environment simulation, and also to verify the wall parameter prediction method proposed. Numerical simulations of two-dimensional cylinder with perfect and real gas effects, and three-dimensional blunt bicone are carried out. It can be concluded that the wall parameter prediction method is reliable, the criterion of the cell Reynolds number based on freestream parameters would amplify the wall grid scale with the increase of the freestream temperature, both MFP and cell Reynolds number based on wall parameters are influenced by wall temperature rather than by freestream temperature, and the grid scale determined by these two criterions are consistent and can satisfy the precision requirements of hypersonic aeroheating computations.
-
Key words:
- grid criterion /
- aeroheating /
- hypersonic /
- computation /
- cell Reynolds number
-
[1] Olynick D R, Henline W D.Numerical benchmarks for Navier-Stokes heating calculations on access to space vehicles,AIAA-1995-2078[R].Reston:AIAA,1995. [2] Siddiqui M S, Hoffman K A,Chiang S T,et al.A comparative study of the Navier-Stokes solvers with emphasis on the heat transfer computations of high speed flows,AIAA-1992-0835[R].Restion:AIAA,1992. [3] Hoffman K A, Siddiqui M S,Chiang S T.Difficulties associated with the heat flux computations of high speed flows by the Navier-Stokes equations,AIAA-1991-0457[R].Reston:AIAA,1991. [4] Papadopoulos P, Venkatapathy E,Prabhu D,et al.Current grid-generation strategies and future requirements in hypersonic vehicle design,analysis and testing[J].Applied Mathematical Modelling,1999,23(9):705-735. [5] Men'shov I S, Nakamura Y.Numerical simulations and experimental comparison for high-speed nonequilibrium air flows[J].Fluid Dynamics Research,2000,27(5):305-334. [6] Klopfer G H, Yee H C.Viscous hypersonic shock-on-shock interaction on blunt cowl lips,AIAA-1988-0233[R].Reston:AIAA, 1988. [7] 潘沙,冯定华, 丁国昊,等.气动热数值模拟中的网格相关性及收敛[J].航空学报,2010,31(3):493-499. Pan S,Feng D H,Ding G H,et al.Grid dependency and convergence of hypersonic aerothermal simulation[J].Acta Aeronautica et Astronautica Sinica,2010,31(3):493-499(in Chinese). [8] 程晓丽,艾邦成, 王强.基于分子平均自由程的热流计算壁面网格准则[J].力学学报,2010,42(6):1083-1089. Cheng X L,Ai B C,Wang Q.A wall grid scale criterion based on the molecule mean free path for the wall heat flux computations by the Navier-Stokes equations[J].Chinese Journal of Theoretical and Applied Mechanics,2010,42(6):1083-1089(in Chinese). [9] 阎超,禹建军, 李君哲.热流CFD计算中格式和壁面法向网格尺度若干问题研究[J].空气动力学学报,2006,24(1):125-130. Yan C,Yu J J,Li J Z.Scheme effect and grid dependency in CFD computations of heat transfer[J].Acta Aerodynamica Sinica,2006,24(1):125-130(in Chinese). [10] Gao Z X, Jiang C W,Lee C H.Improvement and application of wall function boundary condition for high-speed compressible flows[J].Science China Technological Sciences,2013,56(10): 2501-2515. [11] Gao Z X, Lee C H.A numerical study of turbulent combustion characteristics in a combustion chamber of a scramjet engine[J].Science China Technological Sciences,2010,53(8):2111-2121. [12] Holden M S, Wieting A R,Moselle J R,et al.Studies of aerothermal loads generated in regions of shock/shock interaction in hypersonic flow,AIAA-1988-0477[R].Reston:AIAA,1988. [13] Klaus H, Jan M S,Sebastian K,et al.Cylinder shock layer density profiles measured in high enthalpy flows in HEG,AIAA-2002-2913[R].Reston:AIAA,2002. [14] Gupta R N, Yos J M,Thompson R A,et al.A review of reaction rates and thermodynamic and transport properties for the 11 species air model for chemical and thermal nonequilibrium calculations to 30 000 K,NASA-TM-101528[R].Washington,D.C.:NASA,1989. [15] Miler C G III. Experimental and predicted heating distributions for biconics at incidence in air at Mach 10,NASA-TP-2334[R].Washington,D.C.:NASA,1984.
点击查看大图
计量
- 文章访问数: 1203
- HTML全文浏览量: 87
- PDF下载量: 934
- 被引次数: 0