3D face recognition based on local radial binary pattern
-
摘要: 针对人脸识别中局部特征的提取,提出了局部径向二值模式(LRBP,Local Radial Binary Pattern),并将其用于三维人脸识别.首先,对经过预处理的人脸深度图像进行区域划分;然后用局部径向二值模式提取子区域的特征序列,并将其链接在一起构成三维人脸的特征向量;最后,利用Fisherface方法对三维人脸特征向量进行训练和识别.在中国科学院自动化研究所三维人脸数据库中选取样本,利用LRBP对其进行识别,结果表明该方法在基本不损失识别率的前提下,可以有效提高识别的效率.Abstract: An operator named local radial binary pattern (LRBP) was proposed for extracting local features in face recognition. The binary sequence encoding scheme of the LRBP is different from that of the local binary pattern. Firstly, the proposed LRBP operator was used in 3D face recognition. 3D face depth images were preprocessed and divided into subregions. Then the signature sequences of the subregions were extracted by the LRBP operator. The feature vectors of a 3D face depth image were obtained by connecting the signature sequences of all the subregions of the image. Finally, the 3D face feature vectors were trained and recognized using the Fisherface method. Experiments were conducted using the 3D face database of Institute of Automation, Chinese Academy of Sciences. The results show that the proposed method can effectively promote the efficiency of 3D face recognition without reducing the recognition rates.
-
Key words:
- pattern recognition /
- 3D face recognition /
- local feature /
- binary pattern /
- local radial binary pattern
-
[1] 明悦. 基于不变性特征的三维人脸识别研究[D].北京:北京交通大学,2013. Ming Y.3D face recognition based on invariant features[D].Beijing:Beijing Jiaotong University,2013(in Chinese). [2] 叶长明. 三维人脸识别中若干关键问题研究[D].合肥:合肥工业大学,2012. Ye C M.Key issues in 3D face recognition[D].Hefei:Hefei University of Technology,2012(in Chinese). [3] Ardabilian M, Szeptycki P,Huang D,et al.3D face recognition[J].Signal and Image Processing for Biometrics,2012,30(2):89-115. [4] Sharma P B, Goyani M M.3D face recognition techniques-a review[J].International Journal of Engineering Research and Applications (IJERA),2012,45(3):787-793. [5] Lowe D. Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110. [6] Chua C S, Han F,Ho Y K.3D human face recognition using point signature[C]//Proceedings of Fourth IEEE International Conference on Automatic Face and Gesture Recognition.Grenoble:IEEE,2000:233-238. [7] Ojala T, Pietikäinen M,Harwood D.A comparative study of texture measures with classification based on featured distributions[J].Pattern Recognition,1996,29(1):51-59. [8] Zhang G, Wang Y.Multimodal 2D and 3D facial ethnicity classification[C]//Proceedings of Fifth IEEE International Conference on Image and Graphics.Piscataway,NJ:IEEE,2009:928-932. [9] 孙鹤. 基于人脸面部特征的性别分类研究[D].上海:上海交通大学,2008. Sun H.Gender classification based on human face facial features[D].Shanghai:Shanghai Jiaotong University,2008(in Chinese). [10] Zhao G Y, Pietikainen M.Dynamic texture recognition using local binary patterns with an application to facial expressions[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(6):915-928. [11] Vázquez H M, Reyes E G,Molleda Y C.A new image division for LBP method to improve face recognition under varying lighting conditions[C]//Proceedings of 19th International Conference on IEEE of Pattern Recognition.Piscataway,NJ:IEEE,2008:1-4. [12] Shan C, Gong S,McOwan P W.Facial expression recognition based on local binary patterns:a comprehensive study[J].Image and Vision Computing,2009,27(1):803-816. [13] Guo Z, Zhang D.A completed modeling of local binary pattern operator for texture classification[J].IEEE Transactions on Image Processing,2010,19(6):1657-1663. [14] Yan S, Wang H,Tang X O,et al.Exploring feature descriptors for face recognition[C]//Proceedings of IEEE International Conference on Acoustics Speech and Signal.Piscataway,NJ:IEEE,2007:629-632. [15] Ojala T, Pietikainen M,Maenpaa T.Multi-resolution grayscale and rotation invariant texture classification with local binary patterns[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(7):971-987. [16] Li L,Xu C H, Tang W,et al.3D face recognition by constructing deformation invariant image[J].Pattern Recognition Letters,2008,29(5):1596-1602. [17] Belhumeur P N, Hespanha J P,Kriegman D.Eigenfaces vs.fisherfaces:recognition using class specific linear projection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):711-720.
点击查看大图
计量
- 文章访问数: 1181
- HTML全文浏览量: 124
- PDF下载量: 629
- 被引次数: 0