留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Loop细分曲面精加工刀具轨迹生成

陈甜甜 赵罡

陈甜甜, 赵罡. Loop细分曲面精加工刀具轨迹生成[J]. 北京航空航天大学学报, 2015, 41(4): 663-668. doi: 10.13700/j.bh.1001-5965.2014.0308
引用本文: 陈甜甜, 赵罡. Loop细分曲面精加工刀具轨迹生成[J]. 北京航空航天大学学报, 2015, 41(4): 663-668. doi: 10.13700/j.bh.1001-5965.2014.0308
CHEN Tiantian, ZHAO Gang. Tool path generation for Loop subdivision surface based finish machining[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(4): 663-668. doi: 10.13700/j.bh.1001-5965.2014.0308(in Chinese)
Citation: CHEN Tiantian, ZHAO Gang. Tool path generation for Loop subdivision surface based finish machining[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(4): 663-668. doi: 10.13700/j.bh.1001-5965.2014.0308(in Chinese)

Loop细分曲面精加工刀具轨迹生成

doi: 10.13700/j.bh.1001-5965.2014.0308
基金项目: 国家自然科学基金资助项目(61170198); 中央高校基本科研业务费资助项目(YWF-14-JXXY-19)
详细信息
    作者简介:

    陈甜甜(1982—), 女, 上海人, 实验师, candy_ctt@163.com

    通讯作者:

    赵罡(1972—), 男, 河北文安人, 教授, zhaog@buaa.edu.cn, 研究方向为复杂曲面造型、加工新技术、飞机数字化装配、虚拟现实技术及应用.

  • 中图分类号: TP391.72

Tool path generation for Loop subdivision surface based finish machining

  • 摘要: 细分曲面既能表示连续的几何设计模型也能表示离散的加工模型,避免了模型转换的复杂中间过程.细分曲面除了对于构造具有任意拓扑结构的复杂零件具有巨大的优势外,对于数字化制造也极具发展潜力.因此,对基于Loop细分曲面的精加工刀具轨迹生成算法进行了研究.首先利用基于弦长误差的自适应插值Loop细分得到精加工模型;然后利用等斜率跟踪法将精加工模型分割为平坦区域和非平坦区域.对各个区域依次进行处理,不同区域实施不同的刀具轨迹规划.据此,既避免了因细分过程数据量过大而导致的曲面精度不足或表面质量降低的问题,又可顺利计算整张曲面相对均匀残留高度的刀具轨迹.最后,为验证该算法的可行性进行铣削加工实验.

     

  • [1] 周济,周艳红. 数控加工技术[M].北京:国防工业出版社,2002:78-147. Zhou J,Zhou Y H.Numerical control machining technology[M].Beijing:National Defence Industry Press,2002:78-147(in Chinese).
    [2] Kurgano J, Suziki H K F.Generation of NC tool path for subdivision surfaces[C]//Proceedings of CAD/Graphics.Kunming:IEEE Computer Society Press,2001:676-682.
    [3] 钟大平,周来水, 王占东,等.细分曲面的NC导轨生成算法及实现[J].东南大学学报,2004,34(1):1-4. Zhong D P,Zhou L S,Wang Z D,et al.Research on NC tool path generation for subdivision surface[J].Journal of Southeast University,2004,34(1):1-4(in Chinese).
    [4] 白杰,赵罡, 姚福生.带折痕的Loop细分曲面等距面处理算法[J].计算机辅助设计与图形学学报,2008,20(10):1261-1265. Bai J,Zhao G,Yao F S.An offset algorithm for Loop subdivision surface with creases[J].Journal of Computer-Aided Design & Computer Graphics,2008,20(10):1261-1265(in Chinese).
    [5] 赵建民. 基于Catmull-Clark模式的细分曲面NC刀具轨迹生成技术[D].大连:大连理工大学,2008. Zhao J M.Technology of generating NC tool path for subdivision surfaces based on Catmull-Clark scheme[D].Dalian:Dalian University of Technology,2008(in Chinese).
    [6] 唐虹. Catmull-Clark细分曲面的NC刀具生成关键技术研究[D].南京:南京航空航天大学,2008. Tang H.Research on key technologies of NC tool path generation based on Catmull-Clark subdivision surface[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2008(in Chinese).
    [7] Lu C, Ting K.Subdivision surface-based finish machining[J].International Journal of Production Research,2006,44(12):2445-2463.
    [8] 孙殿柱,范述鑫, 李延瑞,等.三角网格细分曲面数控加工刀轨快速生成算法[J].农业机械学报,2009,40(3):218-221. Sun D Z,Fan S X,Li Y R,et al.Algorithm of NC tool path generation for triangular meshing[J].Journal of Agricultural Machinery,2009,40(3):218-221(in Chinese).
    [9] Yuan N T, Liao W H,Tang H.Generation of NC tool path for Catmull-Clark subdivision surface[C]//Proceeding of First International Conference on Modeling and Simulation.Nanjing:IEEE Computer Society Press,2008:93-98.
    [10] 徐金亭,刘伟军, 卞宏友,等.基于网格曲面模型的等残留刀位轨迹生成方法[J].机械工程学报,2010,46(11):193-198. Xu J T,Liu W J,Bian H Y,et al.Constant scallop tool path for triangular surface machining[J].Journal of Mechanical Engineering,2010,46(11):193-198(in Chinese).
    [11] 戴军富,秦开怀. Doo-Sabin曲面NC刀具的并行轨迹计算[J].计算机辅助设计与图形学学报,2003,15(5):604-609. Dai J F,Qin K H.A parallel method for generating NC tool paths of Doo-Sabin surfaces[J].Journal of Computer-Aided Design & Computer Graphics,2003,15(5):604-609(in Chinese).
    [12] 陆云芳. 细分曲面在CAM中的关键技术研究[D].杭州:浙江大学,2007. Lu Y F.Research on the key technology of subdivision surface in CAM[D].Hangzhou:Zhejiang University,2007(in Chinese).
    [13] Huang Z J, Wang G P.Bounding the distance between a Loop subdivision surface and its limit mesh[C]//Proceedings of Geometric Modeling and Processing.Heidelberg:Springer Verlag,2008:33-46.
    [14] 陈甜甜,赵罡. 半规则三角网格模型细分曲面重构[J].北京航空航天大学学报,2012,38(9):1245-1249. Chen T T,Zhao G.Semi-regular triangular mesh subdivision surface reconstruction[J].Journal of Beijing University of Aeronautics and Astronautics,2012,38(9):1245-1249(in Chinese).
    [15] 李桂清,吴壮志, 马维银.自适应细分技术研究进展[J].计算机辅助设计与图形学学报,2006,18(12):1789-1798. Li G Q,Wu Z Z,Ma W Y.Research advances in adaptive subdivision techniques[J].Journal of Computer-Aided Design & Computer Graphics,2006,18(12):1789-1798(in Chinese).
    [16] Flutter A, Todd J.A machining strategy for tool making[J].Computer-Aided Design,2001,33(13):1009-1022.
    [17] Jun C S, Kim D S,Park S.A new curve-based approach to polyhedral machining[J].Computer-Aided Design,2002,349(5): 379-389.
    [18] Bentley J L, Ottmann T A.Algorithm for reporting and counting geometric intersections[J].IEEE Transactions on Computers,1979,C-28(9):643-647.

  • 加载中
计量
  • 文章访问数:  1213
  • HTML全文浏览量:  91
  • PDF下载量:  773
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-28
  • 修回日期:  2014-08-05
  • 网络出版日期:  2015-04-20

目录

    /

    返回文章
    返回
    常见问答