留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂边界条件下的多跨梁的振动模型

刘向尧 聂宏 魏小辉

刘向尧, 聂宏, 魏小辉等 . 复杂边界条件下的多跨梁的振动模型[J]. 北京航空航天大学学报, 2015, 41(5): 841-846. doi: 10.13700/j.bh.1001-5965.2014.0315
引用本文: 刘向尧, 聂宏, 魏小辉等 . 复杂边界条件下的多跨梁的振动模型[J]. 北京航空航天大学学报, 2015, 41(5): 841-846. doi: 10.13700/j.bh.1001-5965.2014.0315
LIU Xiangyao, NIE Hong, WEI Xiaohuiet al. Vibration model for multi-span beam with arbitrary complex boundary conditions[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(5): 841-846. doi: 10.13700/j.bh.1001-5965.2014.0315(in Chinese)
Citation: LIU Xiangyao, NIE Hong, WEI Xiaohuiet al. Vibration model for multi-span beam with arbitrary complex boundary conditions[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(5): 841-846. doi: 10.13700/j.bh.1001-5965.2014.0315(in Chinese)

复杂边界条件下的多跨梁的振动模型

doi: 10.13700/j.bh.1001-5965.2014.0315
基金项目: 国家自然科学基金(51105197,51075203);江苏高校优势学科建设工程
详细信息
    作者简介:

    刘向尧(1984—),男,辽宁沈阳人,博士研究生,liuxiangyao@nuaa.edu.cn

    通讯作者:

    聂宏(1960—),男,安徽芜湖人,教授,博士生导师,hnie@nuaa.edu.cn,主要研究方向飞行器起落装置设计.

  • 中图分类号: O326

Vibration model for multi-span beam with arbitrary complex boundary conditions

  • 摘要: 对Timoshenko梁的横向自由振动方程进行推导,进而运用传递矩阵法给出了复杂边界条件下的多跨梁的自由振动模型.在不考虑梁的剪切变形和绕中性轴的转动惯量的影响的情况下,模型简化成了Bernoulli-Euler梁的格式.通过分析,给出了3个具有工程意义的简化模型,分别是双跨梁、悬臂梁带有集中质量模型及带有任意拉压弹簧和集中质量的自由振动模型.简化模型的分析结果与已有文献的分析结果相比具有很好的一致性,表明本文建立的模型是合理可用的.

     

  • [1] McPherson A E,Evans J J,Levy S.Influence of wing flexibility on force-time relation in shock strut following vertical landing impact,NACA-TN-1995[R].Washington,D.C.:NACA,1949.
    [2] 史友进,张曾錩. 大柔性飞机着陆响应弹性机体模型[J].东南大学学报:自然科学版,2005,35(4):549-552. Shi Y J,Zhang Z C.Elastic model for flexible airplane landing impact analysis[J].Journal of Southeast University:Natural Science Edition,2005,35(4):549-552(in Chinese).
    [3] Wang D,Jiang J S,Zhang W H.Frequency optimization with respect to lumped mass position[J].AIAA Journal,2003,41(9):1780-1787.
    [4] 刘天雄,林益明,王明宇,等.航天器振动控制技术进展[J].宇航学报,2008,29(1):1-12. Liu T X,Lin Y M,Wang M Y,et al.Review of the spacecraft vibration control technology[J].Journal of Astronautics,2008,29(1): 1-12(in Chinese).
    [5] 陆毓琪,王晓锋,张延教,等.具有任意多个弹性与刚性支承及集中质量的梁振动问题[J].弹道学报,1997,9(4):23-28. Lu Y Q,Wang X F,Zhang Y J,et al.Natural vibration of variable cross section continuous beam with arbitrary lumped mass,elastical and rigid supports[J].Journal of Ballistics,1997,9(4):23-28(in Chinese).
    [6] 芮筱亭,秦英孝,赵海林,等.有任意个集中质量的转管炮的固有振动[J].兵工学报,1994(2):1-5. Rui X T,Qin Y X,Zhao H L,et al.Natural vibration of spin tube gun with multi-lumped masses [J].Acta Armamentarii,1994(2): 1-5(in Chinese).
    [7] Wang D,Zhou C Y,Rong J.Free and forced vibration of repetitive structures[J].International Journal of Solids and Structures,2003,40(20):5477-5494.
    [8] Chen D W,Wu J S.The exact solutions for the natural frequencies and mode shapes of non-uniform beams carrying multiple spring-mass systems[J].Journal of Sound and Vibration,2002,255(2):299-322.
    [9] Wang B P. Eigenvalue sensitivity with respect to location of internal stiffness and mass attachments[J].AIAA Journal,1993,34(4):791-794.
    [10] Ma L,Rui X,Abbas L,et al.Free vibration analysis and physical parameter identification of non-uniform beam carrying spring-mass systems[J].Transactions of Nanjing University of Aeronautics and Astronautics,2012,29(4):345-353.
    [11] Гантмахер Ф Р,Крейн М Г.Осцилляционные матрицы и ядра и малые колебания механических систем[M].Москва:Государственное Издательство Технико Теоретической Литературы,1950:82-208.
    [12] 王其申,章礼华,王大钧.外伸梁离散系统模态的若干定性性质[J].力学学报,2012,44(6):1071-1074. Wang Q S,Zhang L H,Wang D J.Some qualitative prosperities of modes of discrete system of beam with overhang[J].Chinese Journal of Theoretical and Applied Mechanics,2012,44(6):1071-1074(in Chinese).
    [13] 王其申,吴磊,王大钧.多跨梁离散系统的频谱和模态的定性性质[J].力学学报,2009,41(6):947-952. Wang Q S,Wu L,Wang D J.Some qualitative prosperities of frequency spectrum and modes of difference discrete system of multibearing beam[J].Chinese Journal of Theoretical and Applied Mechanics,2009,41(6):947-952(in Chinese).
    [14] 王其申,王大钧. 存在刚体模态的杆、梁连续系统某些振荡性质的补充证明[J].安庆师范学院学报:自然科学版,2014,20(1):1-5. Wang Q S,Wang D J.The supplementary proof of some oscillation property for continuous systems of rod and beam having rigid modes[J].Journal of Anqing Teachers College:Natural Science Edition,2014,20(1):1-5(in Chinese).
    [15] Ariaei A,Ziaei-Rad S,Malekzadeh M.Dynamic response of a multi-span Timoshenko beam with internal and external flexible constraints subject to a moving mass[J].Archive of Applied Mechanics,2013,83(9):1257-1272.
    [16] Ariaei A,Ziaei-Rad S,Ghayour M.Transverse vibration of a multiple-Timos henko beam system with intermediate elastic connections due to a moving load[J].Archive of Applied Mechanics,2011,81(3):263-281.
    [17] Mamandi A,Kargarnovin H M.Dynamic analysis of an inclined Timoshenko beam traveled by successive moving masses/forces with inclusion of geometric nonlinearities[J].Acta Mechanica,2011,218(1-2):9-29.
    [18] Gimena F N,Gonzaga P,Gimena L.Stiffness and transfer matrices of a non-naturally curved 3D-beam element[J].Engineering Structures,2008,30(6):1770-1781.
    [19] Haktanir V,Kiral E.Statical analysis of elastically and continuously supported helicoidal structures by the transfer and stiffness matrix methods[J].Computers and Structures,1993,49(4): 663-677.
    [20] 芮筱亭,来峰,何斌,等.多体系统传递矩阵法及其应用[M].北京:科学出版社,2008:93-94. Rui X T,Lai F,He B,et al.Transfer matrix method of multibody system and its applications[M].Beijing:Science Press,2008:93-94(in Chinese).
    [21] 刘习军,贾启芳. 工程振动理论与测试技术[M].北京:高等教育出版社,2004:242-243. Liu X J,Jia Q F.Engineering vibration theory and testing techniques[M].Beijing:Higher Education Press,2004:242-243(in Chinese).

  • 加载中
计量
  • 文章访问数:  898
  • HTML全文浏览量:  21
  • PDF下载量:  709
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-03
  • 修回日期:  2014-09-05
  • 网络出版日期:  2015-05-20

目录

    /

    返回文章
    返回
    常见问答