留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SIMP法的周期性传热材料拓扑优化

贾娇 程伟 龙凯

贾娇, 程伟, 龙凯等 . 基于SIMP法的周期性传热材料拓扑优化[J]. 北京航空航天大学学报, 2015, 41(6): 1042-1048. doi: 10.13700/j.bh.1001-5965.2014.0401
引用本文: 贾娇, 程伟, 龙凯等 . 基于SIMP法的周期性传热材料拓扑优化[J]. 北京航空航天大学学报, 2015, 41(6): 1042-1048. doi: 10.13700/j.bh.1001-5965.2014.0401
JIA Jiao, CHENG Wei, LONG Kaiet al. Topology optimization for periodic thermal conductive material using SIMP method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(6): 1042-1048. doi: 10.13700/j.bh.1001-5965.2014.0401(in Chinese)
Citation: JIA Jiao, CHENG Wei, LONG Kaiet al. Topology optimization for periodic thermal conductive material using SIMP method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(6): 1042-1048. doi: 10.13700/j.bh.1001-5965.2014.0401(in Chinese)

基于SIMP法的周期性传热材料拓扑优化

doi: 10.13700/j.bh.1001-5965.2014.0401
基金项目: 国家自然科学基金 (11202078)
详细信息
    作者简介:

    贾娇(1984—),女,内蒙古鄂尔多斯人,博士研究生,jiajiao_2012@163.com

    通讯作者:

    程伟(1961—),男,河北保定人,教授,cheng_wei@buaa.edu.cn,主要研究方向为结构动力学、微振动测试及分析、参数辨识等.

  • 中图分类号: O343.1

Topology optimization for periodic thermal conductive material using SIMP method

  • 摘要: 为了实现基于宏观热传导条件的周期性材料微结构设计,建立了基于固体各向同性材料惩罚法的周期性结构拓扑优化模型.模型以体积比为约束,散热弱度最小为优化目标.为了满足周期性约束,将设计域划分为若干相同子区域,并重新分配散热弱度.基于偏微分方程的图像处理方式可以有效地消除棋盘格和网格依赖性现象.讨论并分析了不同子区域个数及不同载荷工况对拓扑优化构型的影响.数值实验结果表明:周期性结构的建模方式可以实现基于宏观稳态热传导条件的周期性材料微结构设计.子区域个数不同时,优化得到不同的微结构构型,这反映了尺寸效应对材料设计的影响.当子区域个数不断增加时,优化结果逐渐趋向收敛于均匀化方法对应的极限值.

     

  • [1] Sigmund O.Materials with prescribed constitutive parameters-an inverse homogenization problem[J].International Journal of Solids and Structures, 1994, 31(17):2313-2329.
    [2] Sigmund O, Torquato S.Design of materials with extreme thermal expansion using a three-phase topology optimization method[J].Journal of the Mechanics and Physics of Solids, 1997, 45(6):1037-1067.
    [3] Zhang W H, Wang F W, Dai G M, et al.Topology optimal design of material microstructures using strain energy-based method[J].Chinese Journal of Aeronautics, 2007, 20(4):321-328.
    [4] 张卫红, 孙士平.多孔材料/结构尺度关联的一体化拓扑优化技术[J].力学学报, 2006, 38(4):522-529. Zhang W H, Sun S P.Integrated design of porous materials and structures with scale-coupled effect[J].Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(4):522-529(in Chinese).
    [5] Hunag X, Xie Y M.Optimal design of periodic structures using evolutionary topology optimization[J].Structural Multidisciplinary Optimization, 2008, 36(6):597-606.
    [6] Zuo Z Z, Xie Y M, Huang X D.Optimal topological design of periodic structures for natural frequencies[J].Journal of Structural Engineering, 2011, 137(10):1229-1240.
    [7] Xie Y M, Zuo Z H, Huang X D, et al.Convergence of topological patterns of optimal periodic structures under multiple scales[J].Structural Optimization, 2012, 46(1):41-50.
    [8] Yan J, Cheng G D, Liu L.A uniform optimum material based model for concurrent optimization of thermoelastic structures and materials[J].International Journal for Simulation and Multidisciplinary Design Optimization, 2008, 2(4):259-266.
    [9] Liu L, Yan J, Cheng G D.Optimum structure with homogeneous optimum truss-like material[J].Computers and Structures, 2008, 86(13-14):1417-1425.
    [10] Niu B, Yan J, Cheng G D.Optimum structure with homogeneous optimum cellular material for maximum fundamental frequency[J].Structural and Multidisciplinary Optimization, 2009, 39(2):115-132.
    [11] 刘远东, 尹益辉, 郭中泽.静动态力学条件下多孔金属的材料/结构多级优化设计研究[J].中国科学:技术科学, 2012, 42(10):1172-1178. Liu Y D, Yin Y H, Guo Z Z.Static and dynamic design based on hierarchical optimization for materials and structure of porous metals[J].Scientia Sinica:Technologica, 2012, 42(10):1172-1178(in Chinese).
    [12] Li Q, Steven G P, Querin O M, et al.Shape and topology design for heat conduction by evolutionary structural optimization[J].International Journal of Heat and Mass Transfer, 1999, 42(17):3361-3371.
    [13] Li Q, Steven G P, Xie Y M, et al.Evolutionary topology optimization for temperature reduction of heat conducting fields[J].International Journal of Heat and Mass Transfer, 2004, 47(23):5071-5083.
    [14] Bendsoe M P, Sigmund O.Topology optimization-theory, methods and applications[M].Berlin:Springer, 2003:270-272.
    [15] 左孔天, 陈立平, 张云清, 等.用拓扑优化方法进行热传导散热体的结构优化设计[J].机械工程学报, 2005, 41(4):13-21. Zuo K T, Chen L P, Zhang Y Q, et al.Structual optimal design of heat conductive body with topology optimization method[J].Chinese Journal of Mechanical Engineering, 2005, 41(4):13-21(in Chinese).
    [16] 龙凯, 左正兴.稳态热传导下的连续体结构拓扑优化[J].中国机械工程, 2007, 18(24):2939-2943. Long K, Zuo Z X.Topological optimization of continuum structure for heat conduction[J].China Mechanical Engineering, 2007, 18(24):2939-2943(in Chinese).
    [17] 龙凯, 左正兴.多工况稳态热传导下的连续体拓扑优化[J].中国机械工程, 2007, 18(16):1925-1929. Long K, Zuo Z X.Topological optimization of continuum structure for heat conduction under multiple loading[J].China Mechanical Engineering, 2007, 18(16):1925-1929(in Chinese).
    [18] 刘书田, 贺丹.渐进密度AESO方法及其在热传导结构拓扑优化中的应用[J].计算力学学报, 2009, 26(2):151-156. Liu S T, He D.Progressive AESO algorithm and application in topology optimization of heat conduction structures[J].Chinese Journal of Computational Mechanics, 2009, 26(2):151-156(in Chinese).
    [19] Gao T, Zhang W H, Zhu J H, et al.Topology optimization of heat conduction problem involving design-dependent heat load effect[J].Finite Elements in Analysis and Design, 2008, 44(14):805-813.
    [20] 张晖, 刘书田, 张雄.拓扑相关热载荷作用下稳态热传导结构拓扑优化[J].中国机械工程, 2009, 20(11):1339-1343. Zhang H, Liu S T, Zhang X.Topology optimization of steady-state heat conduction problems with design-dependent heat loads[J].China Mechanical Engineering, 2009, 20(11):1339-1343(in Chinese).
    [21] Bendsoe M P.Optimization of structural topology, shape and material[M].Berlin:Spriner, 1995:83.
    [22] Sigmund O, Petersson J.Numerical instabilities in topology optimization:A survey on procedures dealing with checkerboards, mesh-dependencies and local minima[J].Structural and Multidisciplinary Optimization, 1998, 16(1):68-75.
    [23] Sigmund O, Maute K.Sensitivity filtering from a continuum mechanics perspective[J].Structural and Multidisciplinary Optimization, 2012, 46(4):471-475.
    [24] Lazarov B S, Sigmund O.Filters in topology optimization based on Helmholtz-type differential equations[J].International Journal for Numerical Methods in Engineering, 2011, 86(6):765-781.
    [25] 焦洪宇, 周奇才, 李文军, 等.基于变密度法的周期性拓扑优化[J].机械工程学报, 2013, 49(13):66-72. Jiao H Y, Zhou Q C, Li W J, et al.Periodic topology optimization using variable density method[J].Journal of Mechanical Engineering, 2013, 49(13):66-72(in Chinese).
    [26] Andreassen E, Clausen A, Schevenels M, et al.Efficient topology optimization in MATLAB using 88 lines of code[J].Structural and Multidisciplinary Optimization, 2011, 43(1):1-16.
    [27] Sigmund O, Maute K.Topology optimization approaches[J].Structural and Multidisciplinary Optimization, 2013, 48(6):1030-1055.
  • 加载中
计量
  • 文章访问数:  1046
  • HTML全文浏览量:  74
  • PDF下载量:  649
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-03
  • 网络出版日期:  2015-06-20

目录

    /

    返回文章
    返回
    常见问答