留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于负载特征聚类的节能资源调度算法

夏庆新 兰雨晴 唐甜 肖利民

夏庆新, 兰雨晴, 唐甜, 等 . 基于负载特征聚类的节能资源调度算法[J]. 北京航空航天大学学报, 2015, 41(4): 680-685. doi: 10.13700/j.bh.1001-5965.2014.0407
引用本文: 夏庆新, 兰雨晴, 唐甜, 等 . 基于负载特征聚类的节能资源调度算法[J]. 北京航空航天大学学报, 2015, 41(4): 680-685. doi: 10.13700/j.bh.1001-5965.2014.0407
XIA Qingxin, LAN Yuqing, TANG Tian, et al. Energy-saving resource scheduling algorithm based on workload characteristic clustering[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(4): 680-685. doi: 10.13700/j.bh.1001-5965.2014.0407(in Chinese)
Citation: XIA Qingxin, LAN Yuqing, TANG Tian, et al. Energy-saving resource scheduling algorithm based on workload characteristic clustering[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(4): 680-685. doi: 10.13700/j.bh.1001-5965.2014.0407(in Chinese)

基于负载特征聚类的节能资源调度算法

doi: 10.13700/j.bh.1001-5965.2014.0407
基金项目: 国家自然科学基金重点资助项目 (61232009)
详细信息
    作者简介:

    夏庆新(1978—),男,辽宁辽阳人,博士生,xiaqingxin@cse.buaa.edu.cn

    通讯作者:

    兰雨晴(1969—),男,副教授,内蒙古呼和浩特人,lanyuqing@buaa.edu.cn,研究方向为操作系统、软件工程.

  • 中图分类号: V221+.3;TB553

Energy-saving resource scheduling algorithm based on workload characteristic clustering

  • 摘要: 基础设施即服务(IaaS,Infrastructure as a Service)平台提供商为用户提供高性能服务的同时,必须考虑如何在不违反服务级别协议(SLA,Service Level Agreement)的前提下,节约云平台的能耗成本.采用基于负载特征聚类的方法,提出一种IaaS云平台上保证SLA的资源调度算法,最终实现降低SLA违反率和节约能耗的目标.具体采用能耗相关的负载特征提取和改进K-means聚类分析的研究方法,进行资源调度算法研究,对物理资源进行有效分配,以保证IaaS平台节约能耗的要求.实验验证方面,通过扩展CloudSim模拟实验平台,对本研究算法与改进BFD(Best Fit Decreasing)算法进行比较,得出本研究算法在SLA违反率和节能方面更优.

     

  • [1] Wang X L, Liu Z H.An energy-aware VMs placement algorithm in cloud computing environment[C]//Intelligent System Design and Engineering Application(ISDEA),2012 Second International Conference on.Piscataway,NJ:IEEE,2012:627-630.
    [2] Yahoo. M45 supercomputing project[EB/OL].Pittsburgh:Carnegie Mellon University,2009[2014-07-04].http://research.yahoo.com/node/1884.
    [3] Google. Google Cluster data V2[EB/OL].California:Googlecode,2011(2014-11-17)[2014-07-04].http://code.google.com/p/googleclusterdata/wiki/ClusterData2011.
    [4] Brown R. Report to congress on server and data center energy efficiency:public law 109-431[J].Lawrence Berkeley National Laboratory,2008:1-137.
    [5] Anil K J. Data clustering:50 years beyond K-means[J].Pattern Recognition Letters,2010,31(8):651-666.
    [6] Zhang W, Yang H I,Jiang H Y,et al.Automatic data clustering analysis of arbitrary shape with K-means and enhanced ant-based template mechanism[C]//36th IEEE Annual International Computer Software and Applications Conference.Washington,D.C.:IEEE Computer Society,2012:452-455.
    [7] 孙吉贵,刘杰, 赵连宇.聚类算法研究[J].软件学报,2008,19(1):48-61. Sun J G,Liu J,Zhao L Y.Research on clustering algorithm[J].Journal of Software,2008,19(1):48-61(in Chinese).
    [8] Mahajan M, Nimborkor P,Varadarajan K.The planar K-means problem is NP-hard[J].Lecture Notes in Computer Science,2009,5431:274-285.
    [9] 陈宁,陈安, 周龙骧.基于密度的增量式网格聚类算法[J].软件学报,2002,13(1):1-7. Chen N,Chen A,Zhou L X.Incremental clustering algorithm based on density[J].Journal of Software,2002,13(1):1-7(in Chinese).
    [10] Gupta H, Srivastava R.k-means based document clustering with automatic “k” selection and cluster refinement[J].International Journal of Computer Science and Mobile Applications,2014,2(5):7-13.
    [11] 李凯,李昆仑, 崔丽娟.模型聚类及在集成学习中的应用研究[J].计算机研究与发展,2007,44(z2):203-207. Li K,Li K L,Cui L J.Study of model clustering and its application to ensemble learning[J].Journal of Computer Research and Development,2007,44(z2):203-207(in Chinese).
    [12] Polczynski M, Polczynski M.Using the k-means clustering algorithm to classify features for choropleth maps[J].Cartographica:The International Journal for Geographic Information and Geovisualization,2014,49(1):69-75.
    [13] Coffman Jr E G, Csirik J,Galambos G,et al.Bin packing approximation algorithms:survey and classification[M].Handbook of Combinatorial Optimization.New York:Springer,2013:455-531.
    [14] Hong S, Zhang D,Lau H C,et al.A hybrid heuristic algorithm for the 2D variable-sized bin packing problem[J].European Journal of Operational Research,2014,238(1):95-103.
    [15] Wang L, Lan Y Q,Xia Q X.Using CloudSim to model and simulate cloud computing environment[C]//Computational Intelligence and Security(CIS),2013 9th International Conference on.Emeishan:IEEE,2013:323-328.
    [16] SPEC. SPECpower_ssj2008[EB/OL].Texas:Standard Performance Evaluation Corporation,2008(2013-3-21)[2014-07-04].http://www.spec.org/power/docs/SPECpower-Device_List.html.
    [17] Beloglazov A, Buyya R.Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in cloud data centers[J].Concurrency and Computation:Practice and Experience,2012,24(13):1397-1420.

  • 加载中
计量
  • 文章访问数:  1077
  • HTML全文浏览量:  51
  • PDF下载量:  649
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-09
  • 修回日期:  2014-10-10
  • 网络出版日期:  2015-04-20

目录

    /

    返回文章
    返回
    常见问答