Multi-user identification based on double views coupling in cooperative interaction scenarios
-
摘要: 针对目前协同交互情境下,因遮挡和接触等因素引发的多人协作身份识别错误问题,提出一种双视图耦合的多用户身份识别方法.借助深度相机,分别通过骨骼运动跟踪和卡尔曼滤波建立双视图运动跟踪.利用双视图的用户运动跟踪数据构建相互关联的耦合有限状态机,对耦合关系中的具体运动状态进行分析,建立规则算法;引入实时正误标记值进行多用户身份识别的实时监控与耦合矫正.所提方法与基于单视图的多用户身份识别方法进行对比实验,结果表明,在协同交互情境下所提方法对多用户身份识别更具有鲁棒性.
-
关键词:
- 协同交互 /
- 身份识别 /
- 卡尔曼滤波 /
- 运动跟踪 /
- 有限状态机(FSM)
Abstract: An approach of multi-user identification based on double views coupling was proposed for the problem of identification error in cooperative multiplayer caused by occlusion and contact, in cooperative interaction scenarios. Double views motion tracking was established by the method of skeletons motion tracking and Kalman filter, with the depth cameras. Correlative finite-state machine was build using the motion tracking data of double views, to analyze the specific user motion status of coupling relationship and set up algorithms, the value of true or false tag was introduced to monitor and coupling correct multi-user identity in real-time. The new approach was compared with that of multi-user identity based on single view by experimentation, it is indicated that, the approach of multi-user identification based on double views coupling in cooperative interaction scenarios is more robust.-
Key words:
- cooperative interaction /
- identification /
- Kalman filter /
- motion tracking /
- finite-state machine (FSM)
-
[1] Grudin J,Poltrock S.Taxonomy and theory in computer supported cooperative work[M].Kozlowski S W J.The Oxford Handbook of Organizational Psychology.Oxford:Oxford University Press,2012:1323-1348. [2] Navarro P,Johns M L,Lu T H,et al.Webz of war:a cooperative exergame driven by the heart[C]//2013 IEEE Intermational Games Innovation Conference.Vancouver,BC:IEEE,2013:187-190. [3] 迟健男,刘丛丛,朱博,等.多人多点触摸系统多用户协同交互触点归属问题研究[C]//第25届中国控制与决策会议论文集.沈阳:东北大学出版社,2013:3478-3485. Chi J N,Liu C C,Zhu B,et al.Research on the ownership of user touch points of multi-user cooperative interaction in multi-user multi-touch system[C]//Control and Decision Conference(CCDC),2013 25th Chinese.Shenyang:Northeastern University Press,2013:3478-3485.(in Chinese) [4] Hocking C G,Furnell S M,Clarke N L,et al.Co-operative user identity verification using an authentication aura[J].Computers & Security,2013,39(8):486-502. [5] Gall J,Stoll C,De Aguiar E,et al.Motion capture using joint skeleton tracking and surface estimation[C]//2009 IEEE Computer Society Conference of Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE,2009:1746-1753. [6] Matt. Managing multiple players with kinect in C#[EB/OL].Matt Crouch-WebDeveloper(2012-06-10)[2014-05-15]. [7] Salvi D,Waggoner J,Temlyakov A,et al.A graph-based algorithm for multi-target tracking with occlusion[C]//Proceedings of the 2013 IEEE Workshop on Applications of Computer Vision.Washington,D.C.:IEEE,2013:489-496. [8] Choi W,Pantofaru C,Savarese S.Detecting and tracking people using an RGB-D camera via multiple detector fusion[C]//Proceedings of the 2011 IEEE International Conference on Computer Vision Workshops.Piscataway,NJ:IEEE,2011:1076-1083. [9] 张彦超,许宏丽. 遮挡目标的分片跟踪处理[J].中国图象图形学报,2014,19(1):92-100. Zhang Y C,Xu H L.Fragments tracking under occluded target[J].Journal of Image and Grapgics,2014,19(1):92-100(in Chinese). [10] 赵龙,肖军波. 一种改进的运动目标抗遮挡跟踪算法[J].北京航空航天大学学报,2013,39(4):517-520. Zhao L,Xiao J B.Improved algorithm of tracking moving objects under occlusions[J].Journal of Beijing University of Aeronautics and Astronautics,2013,39(4):517-520(in Chinese). [11] Qin B,Wan N C.PANOPTICON:person recognition and tracking through occlusion using extended Kalman[EB/OL].New York:Cornell University,2011[2014-05-30]. [12] Harvey E R,Ouellet J N,Echevarria J,et al.Computer vision application using the Kinect sensor for the identification and tracking of users interacting with a surface computing platform[C]//Proceedings of the 2012 Applied Vision and Robotics Workshop.Montreal:[s.n.],2012:74-86. [13] Barbosa I B,Cristani M,Del Bue A,et al.Re-identification with RGB-D sensors[C]//Proceedings of the 12th European Conference on Computer Vision.Heidelberg,Berlin:Springer,2012,7583:433-442. [14] Meng R,Isenhower J,Qin C,et al.Can smartphone sensors enhance kinect experience[C]//Proceedings of the thirteenth ACM international symposium on Mobile Ad Hoc Networking and Computing.New York:ACM,2012:265-266. [15] Ackad C,Clayphan A,Maldonado R M,et al.Seamless and continuous user identifica-tion for interactive tabletops using personal device handshaking and body tracking[C]//Proceedings of CHI'12 Extended Abstracts on Human Factors in Computing Systems.New York:ACM:2012:1775-1780. [16] 王炜,郭毓,俞信. 基于卡尔曼滤波的多区域关联运动目标跟踪[J].计算机应用,2012,32(11):3174-3177. Wang W,Guo Y,Yu X.Moving object tracking with related multi-regions based on Kalman filter[J].Journal of Computer Applications,2012,32(11):3174-3177(in Chinese). [17] 陈志敏,薄煜明,吴盘龙,等.基于自适应粒子群优化的新型粒子滤波在目标跟踪中的应用[J].控制与决策,2013,28(2):193-200. Chen Z M,Bo Y M,Wu P L,et al.Novel particle filter algorithm based on adaptive particle swarm optimization and its application to radar target tracking[J].Control and Decision,2013,28(2):193-200(in Chinese). [18] Shotton J,Fitzgibbon A,Cook M,et al.Real-time human pose recognition in parts from single depth images[C]//Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Computer Society,2011:1297-1304. [19] Salhi A,Jammoussi A Y.Object tracking system using camshift,meanshift and Kalman filter[J].World Academy of Science,Engineering and Technology,2012,64(6):674-679. [20] 史倩,吴开华. 区域生长的轮对图像分割[J].中国图象图形学报,2012,17(9):1122-1127. Shi Q,Wu K H.Image segmentation for wheel set measurement based on region growing[J].Journal of Image and Graphics,2012,17(9):1122-1127(in Chinese).
点击查看大图
计量
- 文章访问数: 1273
- HTML全文浏览量: 134
- PDF下载量: 53096
- 被引次数: 0