留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于移动平台的快速相似脸检索

邓健康 杨静 王蒙 刘青山

邓健康, 杨静, 王蒙, 等 . 基于移动平台的快速相似脸检索[J]. 北京航空航天大学学报, 2015, 41(2): 323-330. doi: 10.13700/j.bh.1001-5965.2014.0460
引用本文: 邓健康, 杨静, 王蒙, 等 . 基于移动平台的快速相似脸检索[J]. 北京航空航天大学学报, 2015, 41(2): 323-330. doi: 10.13700/j.bh.1001-5965.2014.0460
DENG Jiankang, YANG Jing, WANG Meng, et al. Fast similar face retrieval based on mobile platform[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(2): 323-330. doi: 10.13700/j.bh.1001-5965.2014.0460(in Chinese)
Citation: DENG Jiankang, YANG Jing, WANG Meng, et al. Fast similar face retrieval based on mobile platform[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(2): 323-330. doi: 10.13700/j.bh.1001-5965.2014.0460(in Chinese)

基于移动平台的快速相似脸检索

doi: 10.13700/j.bh.1001-5965.2014.0460
基金项目: 国家自然科学基金资助项目(61272223,61300162); 江苏省自然科学基金资助项目(201204234,201210296)
详细信息
    作者简介:

    邓健康(1990—), 男, 江苏南通人, 硕士生, deng_jiankang@126.com

    通讯作者:

    刘青山(1975—), 男, 安徽合肥人,教授, qsliu@nuist.edu.cn, 主要研究方向为计算机视觉.

  • 中图分类号: TP391.4

Fast similar face retrieval based on mobile platform

  • 摘要: 主要研究了移动平台上的相似脸检索问题.对于移动端,首先采用基于稀疏约束的级联回归模型进行精确的人脸配准,该方法不但能够筛选鲁棒的特征,而且可以将模型的大小压缩到原来的5%左右.接着,在某些关键点周围提取高维的纹理特征,并通过稀疏投影降维.对于服务器端,采用级联形状和纹理特征的方式进行高效的相似脸检索.首先基于稀疏形状重构的方式筛选脸型相似的人脸,然后基于稀疏纹理重构的方法确定相似脸.在三星Note 3智能手机上,人脸图像的配准时间约10 ms.在扩展的LFW(Labeled Face in Wild)数据库上,相似脸检索时间约1.5 s,整个模型大小约5.4 MB.大量实验结果表明,配准方法精度高,速度快,模型小;相似脸检索的方法效率高,检索结果更符合人们的视觉感受.

     

  • [1] Hua G, Fu Y,Turk M,et al.Introduction to the special issue on mobile vision[J].International Journal of Computer Vision,2012,96(3):277-279.
    [2] 山世光, 高文,唱轶钲,等.人脸识别中的“误配准灾难”问题研究[J].计算机学报,2005,28(5):783-791. Shan S G,Gao W,Chang Y Z,et al.“Curse of Mis-alignment”problem in face recognition[J].Chinese Journal of Computers, 2005,28(5):783-791(in Chinese).
    [3] Cootes T F, Taylor C J,Cooper D H,et al.Active shape models-their training and application[J].Computer Vision and Image Understanding,1995,61(1):38-59.
    [4] Cootes T F, Edwards G J,Taylor C J.Active appearance models[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(6):681-685.
    [5] Cristinacce D, Cootes T.Automatic feature localisation with constrained local models[J].Pattern Recognition,2008,41(10):3054-3067.
    [6] Zhu X X, Ramanan D.Face detection,pose estimation,and landmark localization in the wild[C]//Proceeding of the Computer Vision and Pattern Recognition.Washington:IEEE Computer Society,2012:2879-2886.
    [7] Zhou F, Brandt J,Lin Z.Exemplar-based graph matching for robust facial landmark localization[C]//Proceedings of the IEEE International Conference on Computer Vision.Piscataway,NJ:IEEE,2013:1025-1032.
    [8] Sun Y, Wang X G,Tang X O.Deep convolutional network cascade for facial point detection[C]//Proceeding of the Computer Vision and Pattern Recognition.Washington:IEEE Computer Society,2013:3476-3483.
    [9] Cao X D, Wei Y C,Wen F,et al.Face alignment by explicit shape regression[C]//Proceeding of the Computer Vision and Pattern Recognition.Washington:IEEE Computer Society,2012:2887-2894.
    [10] Xiong X H, De la Torre F.Supervised descent method and its applications to face alignment[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington:IEEE Computer Society,2013:532- 539.
    [11] Ren S Q, Cao X D,Wei Y C,et al.Face alignment at 3000 FPS via regressing local binary features[C]//Proceeding of the Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE,2014:1232-1240.
    [12] Burgos-Artizzu X P,Perona P,Dollar P.Robust face landmark estimation under occlusion[C]//Proceeding of the International Conference on Computer Vision.Piscataway,NJ:IEEE,2013:1513-1520.
    [13] Chen D, Cao X,Wen F,et al.Blessing of dimensionality:high-dimensional feature and its efficient compression for face verification[C]//Proceeding of the Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE,2013:3025-3032.
    [14] Gionis A, Indyk P,Motwani R.Similarity search in high dimensions via hashing[J].VLDB,1999,99(6):518-529.
    [15] Huang G B, Mattar M,Berg T,et al.Labeled faces in the wild:a database for studying face recognition in unconstrained environments[J].International Journal of Computer Vision,2007,96(3):277-279.
    [16] Asthana A, Zafeiriou S,Cheng S,et al.Robust discriminative response map fitting with constrained local models[C]//Proceeding of the Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE,2013:3444-3451.
    [17] Tibshirani R. Regression shrinkage and selection via the lasso[J].Journal of the Royal Statistical Society,1996,24(3):267-288.
    [18] Sagonas C, Tzimiropoulos G,Zafeiriou S,et al.300 faces in-the-wild challenge:the first facial landmark localization challenge[C]//Proceedings of the IEEE International Conference on Computer Vision.Piscataway,NJ:IEEE,2013:397-403.
    [19] Yan J J, Zhang X C,Lei Z,et al.Structural models for face detection[C]//Proceeding of the Automatic Face and Gesture Recognition.Washington:IEEE Computer Society,2013:1-6.
    [20] Cheng J, Leng C,Wu J X,et al.Fast and accurate image matching with cascade hashing for 3D reconstruction[C]//Proceeding of the Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE,2014:1-8.

  • 加载中
计量
  • 文章访问数:  1061
  • HTML全文浏览量:  25
  • PDF下载量:  773
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-28
  • 网络出版日期:  2015-02-20

目录

    /

    返回文章
    返回
    常见问答