留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维真实地形环境下无人机救援航路规划方法

梁宵 王宏伦 孟光磊 陈侠

梁宵, 王宏伦, 孟光磊, 等 . 三维真实地形环境下无人机救援航路规划方法[J]. 北京航空航天大学学报, 2015, 41(7): 1183-1187. doi: 10.13700/j.bh.1001-5965.2014.0479
引用本文: 梁宵, 王宏伦, 孟光磊, 等 . 三维真实地形环境下无人机救援航路规划方法[J]. 北京航空航天大学学报, 2015, 41(7): 1183-1187. doi: 10.13700/j.bh.1001-5965.2014.0479
LIANG Xiao, WANG Honglun, MENG Guanglei, et al. Path planning for UAV under three-dimensional real terrain in rescue mission[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(7): 1183-1187. doi: 10.13700/j.bh.1001-5965.2014.0479(in Chinese)
Citation: LIANG Xiao, WANG Honglun, MENG Guanglei, et al. Path planning for UAV under three-dimensional real terrain in rescue mission[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(7): 1183-1187. doi: 10.13700/j.bh.1001-5965.2014.0479(in Chinese)

三维真实地形环境下无人机救援航路规划方法

doi: 10.13700/j.bh.1001-5965.2014.0479
基金项目: 国家自然科学基金(61175084); 沈阳飞行器控制与仿真技术重点实验室建设(F14-185-1-00)
详细信息
    通讯作者:

    梁宵(1984—),男,辽宁沈阳人,讲师,connyzone@126.com,主要研究方向为无人机自主控制、航路规划、任务规划.

  • 中图分类号: V249.1

Path planning for UAV under three-dimensional real terrain in rescue mission

  • 摘要: 利用无人机(UAV)的三维飞行能力,采用优化方法规划路径,能够使其在救援任务中比地面车辆以更短的时间到达救援区域,提高救援效率.针对真实的地理环境,根据无人机约束采用均匀化网格方法进行地形建模,之后根据地形数据的特点设计适合数学计算与求解的数据结构.最后设计了包含偏离代价、高度代价、地形跟随/回避代价、威胁代价和安全距离代价的综合性能指标函数,并采用航路点交叉和网格搜索代替航路点搜索的方法,对蚁群算法进行改进完成航路规划.仿真结果表明:本文方法能够直接处理三维地形数据,在保持地貌的前提下,完成了无人机的三维航路规划任务,得到满足无人机约束的三维最优航路,提高了航路规划方法的实用价值.

     

  • [1] Zhang X Y, Wu M, Peng J, et al.A rescue robot path planning based on ant colony optimization algorithm[C]//International Conference on Information Technology and Computer Science 2009.Piscataway, NJ: IEEE Press, 2009: 180-183.
    [2] Khanmohammadi S, Zarrin R S.Intelligent path planning for rescue robot[J].World Academy of Science, Engineering and Technology, 2011, 5(7): 607-612.
    [3] Norouzi M, Bruijn F D, Miro J V.Planning stable paths for urban search and rescue robots[J].Computer Science, 2012, 7416: 90-101.
    [4] Pang T, Ruan X G, Wang E S, et al.Search and rescue robot path planning in unknown environment[J].Applied Mechanics and Materials, 2013, 241: 1682-1687.
    [5] Pang T, Ruan X G, Wang E S, et al.Based on A* and Q-learning search and rescue robot navigation[J]. Telkomnika-Indonesian Journal of Electrical Engineering, 2012, 10(7): 1889-1896.
    [6] Sun H L, Yue L Y, Yao S Y.Study on selection of emergency rescue based on GIS[J].Advanced Materials Research, 2014, 864: 2804-2807.
    [7] Sullivan T A, Van J D.Multi-objective, multi-domain genetic optimization of a hydraulic rescue spreader[J].Mechanism and Machine Theory, 2014, 80: 35-51.
    [8] Liu T L, Wu C D, Li B, et al.The adaptive path planning research for a shape-shifting robot using particle swarm optimization[C]//International Conference on Natural Computation 2009.Piscataway, NJ: IEEE Press, 2009: 324-328.
    [9] 洪晔, 房建成.基于HMDP的无人机三维路径规划[J].北京航空航天大学学报, 2009, 35(1): 100-103. Hong Y, Fang J C.Hierarchical Markov decision processes based path planning for UAV in three-dimensional environment[J].Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(1): 100-103(in Chinese).
    [10] Adolf F M, Hirschmuller H.Meshing and simplification of high resolution urban surface data for UAV path planning[J].Journal of Intelligent and Robotic System, 2011, 61(1): 169-180.
    [11] Samar R, Rehman A.Autonomous terrain-following for unmanned air vehicles[J].Mechatronics, 2011, 21(5): 844-860.
    [12] Glabowski M, Musznicki B, Nowak P, et al.An algorithm for finding shortest path tree using ant colony optimization metaheuristic[J].Advances in Intelligent Systems and Computing, 2014, 233: 317-326.
    [13] Kolavali S R, Bhatnagar S.Ant colony optimization algorithms for shortest path problems[J].Computer Science, 2009, 5425: 37-44.
    [14] Roberge V, Tarbouchi M, Labonte G.Comparison of parallel genetic algorithm and particle swarm optimization for real-time UAV path planning[J].IEEE Transactions on Industrial Informatics, 2013, 9(1): 132-141.
    [15] Chen M, Wu Q X, Jiang C S.A modified ant optimization algorithm for path planning of UCAV[J].Applied Soft Computing, 2008, 8(4): 1712-1718.
  • 加载中
计量
  • 文章访问数:  1122
  • HTML全文浏览量:  176
  • PDF下载量:  753
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-30
  • 修回日期:  2014-11-20
  • 网络出版日期:  2015-07-20

目录

    /

    返回文章
    返回
    常见问答