Path planning for UAV under three-dimensional real terrain in rescue mission
-
摘要: 利用无人机(UAV)的三维飞行能力,采用优化方法规划路径,能够使其在救援任务中比地面车辆以更短的时间到达救援区域,提高救援效率.针对真实的地理环境,根据无人机约束采用均匀化网格方法进行地形建模,之后根据地形数据的特点设计适合数学计算与求解的数据结构.最后设计了包含偏离代价、高度代价、地形跟随/回避代价、威胁代价和安全距离代价的综合性能指标函数,并采用航路点交叉和网格搜索代替航路点搜索的方法,对蚁群算法进行改进完成航路规划.仿真结果表明:本文方法能够直接处理三维地形数据,在保持地貌的前提下,完成了无人机的三维航路规划任务,得到满足无人机约束的三维最优航路,提高了航路规划方法的实用价值.
-
关键词:
- 无人机(UAV)救援 /
- 三维航路规划 /
- 蚁群算法 /
- 数字地图 /
- 真实地形
Abstract: Basing on the capability of three-dimensional flight and planning of optimal path, unmanned aerial vehicles (UAVs) can reach the disaster areas within shorter time than ground vehicles, which will improve the efficiency of rescue. Firstly, according to the real geographical environment, terrain is modeled by a mesh uniform method based on UAV constraints. Secondly, a data structure which is suitable for calculation is designed based on the characteristics of terrain data. Finally, the integrative performance function includes the deviation cost, height cost, terrain following/avoidance cost, threat cost and security distance cost. Both methods of waypoints cross and grid search instead of waypoints are engaged in the improved ant colony algorithm to make three-dimensional UAV path planning. The simulation results show that the method can deal with three-dimensional terrain data directly. While maintaining the topography of the premise, it can find the three-dimensional optimal path of UAV and improve the practical value of path planning technology. -
[1] Zhang X Y, Wu M, Peng J, et al.A rescue robot path planning based on ant colony optimization algorithm[C]//International Conference on Information Technology and Computer Science 2009.Piscataway, NJ: IEEE Press, 2009: 180-183. [2] Khanmohammadi S, Zarrin R S.Intelligent path planning for rescue robot[J].World Academy of Science, Engineering and Technology, 2011, 5(7): 607-612. [3] Norouzi M, Bruijn F D, Miro J V.Planning stable paths for urban search and rescue robots[J].Computer Science, 2012, 7416: 90-101. [4] Pang T, Ruan X G, Wang E S, et al.Search and rescue robot path planning in unknown environment[J].Applied Mechanics and Materials, 2013, 241: 1682-1687. [5] Pang T, Ruan X G, Wang E S, et al.Based on A* and Q-learning search and rescue robot navigation[J]. Telkomnika-Indonesian Journal of Electrical Engineering, 2012, 10(7): 1889-1896. [6] Sun H L, Yue L Y, Yao S Y.Study on selection of emergency rescue based on GIS[J].Advanced Materials Research, 2014, 864: 2804-2807. [7] Sullivan T A, Van J D.Multi-objective, multi-domain genetic optimization of a hydraulic rescue spreader[J].Mechanism and Machine Theory, 2014, 80: 35-51. [8] Liu T L, Wu C D, Li B, et al.The adaptive path planning research for a shape-shifting robot using particle swarm optimization[C]//International Conference on Natural Computation 2009.Piscataway, NJ: IEEE Press, 2009: 324-328. [9] 洪晔, 房建成.基于HMDP的无人机三维路径规划[J].北京航空航天大学学报, 2009, 35(1): 100-103. Hong Y, Fang J C.Hierarchical Markov decision processes based path planning for UAV in three-dimensional environment[J].Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(1): 100-103(in Chinese). [10] Adolf F M, Hirschmuller H.Meshing and simplification of high resolution urban surface data for UAV path planning[J].Journal of Intelligent and Robotic System, 2011, 61(1): 169-180. [11] Samar R, Rehman A.Autonomous terrain-following for unmanned air vehicles[J].Mechatronics, 2011, 21(5): 844-860. [12] Glabowski M, Musznicki B, Nowak P, et al.An algorithm for finding shortest path tree using ant colony optimization metaheuristic[J].Advances in Intelligent Systems and Computing, 2014, 233: 317-326. [13] Kolavali S R, Bhatnagar S.Ant colony optimization algorithms for shortest path problems[J].Computer Science, 2009, 5425: 37-44. [14] Roberge V, Tarbouchi M, Labonte G.Comparison of parallel genetic algorithm and particle swarm optimization for real-time UAV path planning[J].IEEE Transactions on Industrial Informatics, 2013, 9(1): 132-141. [15] Chen M, Wu Q X, Jiang C S.A modified ant optimization algorithm for path planning of UCAV[J].Applied Soft Computing, 2008, 8(4): 1712-1718.
点击查看大图
计量
- 文章访问数: 1122
- HTML全文浏览量: 176
- PDF下载量: 753
- 被引次数: 0