留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于PCA和WPSVM的航天器电特性识别方法

李可 刘祎 杜少毅 孙毅 王浚

李可, 刘祎, 杜少毅, 等 . 基于PCA和WPSVM的航天器电特性识别方法[J]. 北京航空航天大学学报, 2015, 41(7): 1177-1182. doi: 10.13700/j.bh.1001-5965.2014.0482
引用本文: 李可, 刘祎, 杜少毅, 等 . 基于PCA和WPSVM的航天器电特性识别方法[J]. 北京航空航天大学学报, 2015, 41(7): 1177-1182. doi: 10.13700/j.bh.1001-5965.2014.0482
LI Ke, LIU Yi, DU Shaoyi, et al. Spacecraft electrical characteristics identification method based on PCA feature extraction and WPSVM[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(7): 1177-1182. doi: 10.13700/j.bh.1001-5965.2014.0482(in Chinese)
Citation: LI Ke, LIU Yi, DU Shaoyi, et al. Spacecraft electrical characteristics identification method based on PCA feature extraction and WPSVM[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(7): 1177-1182. doi: 10.13700/j.bh.1001-5965.2014.0482(in Chinese)

基于PCA和WPSVM的航天器电特性识别方法

doi: 10.13700/j.bh.1001-5965.2014.0482
基金项目: 航空科学基金(2012XX1043); 中央高校基本科研业务费专项资金(YWF-14-HKXY-017)
详细信息
    通讯作者:

    李可(1980—),男,江苏徐州人,讲师,like@buaa.edu.cn,主要研究方向为智能控制、机器学习等.

  • 中图分类号: TP391.4

Spacecraft electrical characteristics identification method based on PCA feature extraction and WPSVM

  • 摘要: 针对航天器电特性监测系统识别过程中存在测试数据量大、特征维数高、样本少、计算速度慢和识别率低等问题,提出基于主成分分析(PCA)的特征提取和加权近似支持向量机(WPSVM)的在线故障诊断方法.实现了对信号故障特征的主成分分析、选择和提取,并对高维特征数据实现了降维,提高了航天器电特性在线故障诊断的准确性和速度.针对PCA中的结果选取问题,提出运用数据贡献度阈值进行数据截取的方法,有效地保证了数据的有效性与一致性.结果表明:该方法充分利用了航天器电特性监测系统的有用数据特征,有效提高了识别的精度,且计算时间较短,效率较高.

     

  • [1] Steven R S. System identification technology modeling for nonintrusive load diagnostics[D].Cambridge: Massachusetts Institute of Technology, 2000.
    [2] Zadeh L A. Outline of a new approach to the analysis of complex systems and decision processes[J].IEEE Transactions on Systems, Man, and Cybernetics, 1973, 3(1): 28-44.
    [3] Chew H G, Bogner R E, Lim C C.Dual ν-support vector machine with error rate and training size biasing[C]//IEEE International Conference Acoustics Speech Signal Processing.Piscataway, NJ: IEEE Press, 2001, 2: 1269-1272.
    [4] 杜林, 刘伟明, 王有元.基于CPLD的电网过电压变频数据采集卡设计[J].高电压技术, 2008, 34(8): 1589-1593. Du L, Liu W M, Wang Y Y.Data acquisition card with variable sampling speed for monitoring overvoltage based on CPLD[J].High Voltage Engineering, 2008, 34(8): 1589-1593(in Chinese).
    [5] 吴昊, 肖先勇.小波能量谱和神经元网络法识别雷击与短路故障[J].高电压技术, 2007, 33(10): 189-193. Wu H, Xiao X Y.Lightning strike and fault identification by the wavelet energy spectrum and neural network method[J].High Voltage Engineering, 2007, 33(10): 189-193(in Chinese).
    [6] Huang J S, Negnevitsky M, Nguyen D T.A neural-fuzzy classifier for recognition of power quality disturbances[J].IEEE Transactions on Power Delivery, 2002, 17(2): 609-616.
    [7] 王钢, 李海峰, 赵建仓, 等.基于小波多尺度分析的输电线路直击雷暂态识别[J].中国电机工程学报, 2004, 24(4): 358-364. Wang G, Li H F, Zhao J C, et al.Identification of transients on transmission lines caused by direct lighting strokes based on multiresolution signal decomposition[J].Proceedings of the CSEE, 2004, 24(4): 358-364(in Chinese).
    [8] Chien S, Sherwood R, Tran D, et al.Using autonomy flight software to improve science return on Earth Observing One[J].Journal of Aerospace Computing, Information, and Communication, 2005, 2(4): 196-216.
    [9] 李可, 刘旺开, 王浚.专家-模糊PID在低速风洞风速控制系统中的应用[J].北京航空航天大学学报, 2007, 33(12): 1387-1390. Li K, Liu W K, Wang J.Parameters self-tuning fuzzy-PID combined with expert control on wind velocity control system of wind tunnels at home[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(12): 1387-1390(in Chinese).
    [10] Li K, Liu W K, Wang J, et al.An intelligent control method for a large multi-parameter environmental simulation cabin[J].Chinese Journal of Aeronautics, 2013, 26(6): 1360-1369.
    [11] 李可, 庞丽萍, 刘旺开, 等. 环境模拟舱体的建模仿真及控制方法[J].北京航空航天大学学报, 2007, 33(5): 535-538. Li K, Pang L P, Liu W K, et al.System model simulation andcontrol method used in environmental simulation chambers[J].Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(5): 535-538(in Chinese).
    [12] Huang S H, Kothamasu R, Shiralkar Y C, et al.Prediction of plastic preform temperature profile and modeling perspective[J].International Journal of Manufacturing Science and Technology, 2003, 4(2): 56-83.
    [13] 邓乃扬, 田英杰. 数据挖掘中的新方法——支持向量机[M].北京: 科学出版社, 2004: 189-193. Deng N Y, Tian Y J.A new method of data mining: SVM[M].Beijing: Science Press, 2004: 189-193(in Chinese).
    [14] Witten I H, Frank E.Data mining: Practical machine learning tools and techniques[M].2nd ed.San Francisco: Morgan Kaufmann, 2005: 36-39.
    [15] Zhu X, Ye J, Zhang X.A fixed-point nonlinear PCA algorithm for blind source separation[J].Neurocomputing, 2005, 69(1): 264-272.
  • 加载中
计量
  • 文章访问数:  789
  • HTML全文浏览量:  156
  • PDF下载量:  567
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-31
  • 修回日期:  2014-09-26
  • 网络出版日期:  2015-07-20

目录

    /

    返回文章
    返回
    常见问答