Modeling and analysis of dynamic collision region for UAV avoiding aerial intruders
-
摘要: 针对现有方法一般是基于时间或距离的定值来确定碰撞区域的问题,提出了一种基于入侵机和无人机(UAV)运动信息的无人机动态碰撞区建模方法.首先,根据无人机与入侵机的运动状态、两机之间的最小安全距离等信息,通过几何方法得出无人机不采取任何规避机动时两机将发生碰撞区域的解析表达式,即无机动碰撞区数学模型;其次,考虑无人机的机动能力约束,计算了无人机采取最大过载转弯机动(左转或右转)时两机恰好避免碰撞发生的边界,即最大机动碰撞区数学模型;在此基础上,提出了不可规避区的概念;进而定义了安全飞行包络,它是无人机能够规避入侵机威胁的分界线;最后通过理论和仿真结合分析了影响各区域的主要因素.仿真与分析结果表明所建碰撞区不仅可以帮助无人机选择规避机动方式,而且能够帮助无人机判定常规避撞机动是否失败,并使无人机及时采取最大过载转弯机动,对无人机安全避撞决策具有实际参考价值.Abstract: In view of the existing methods to calculate collision region using certain threshold value of distance or time, an unmanned aerial vehicle (UAV) dynamic collision region model based on maneuver information of both UAV and aerial intruder was presented. Firstly, the no-maneuver collision region was proposed. In this region, UAV and intruder would undergo collision if UAV didn't execute any avoidance maneuver. Using a geometric method, a mathematical model of no-maneuver collision region was formulated utilizing the motion states of UAV and intruder, and minimum safety distance, etc. Secondly, the constraints on the UAV maneuverability were added to calculate the maximum maneuverability collision region, which was the border for UAV to avoid the collision by maximum maneuverability flight. Thirdly, the concept of non-escape region was proposed. Then the safe flight envelope was presented. This safe flight envelope was a boundary line of avoiding a collision with aerial intruder for UAV. Finally, the key factors of the proposed regions were analyzed by theoretical derivation combined with simulation. The results show that the presented collision regions are useful for UAV to select and evaluate the avoidance maneuver, and to decide whether to execute maximum maneuverability flight. The presented collision regions provide a practical guideline for UAV to ensure safe collision avoidance.
-
[1] 蔡志浩, 杨丽曼, 王英勋, 等.无人机全空域飞行影响因素分析[J].北京航空航天大学学报, 2011, 37(2): 175-179. Cai Z H, Yang L M, Wang Y X, et al.Analysis for whole airspace flight key factors of unmanned aerial vehicles[J].Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(2): 175-179(in Chinese). [2] Thomas W, Ned A S.Development and operation of the traffic alert and collision avoidance system(TCAS)[J].Proceedings of the IEEE, 1989, 77(11): 1735-1744. [3] Fairuz I R, Joshua D K, Li L, et al.Impact of automatic dependent surveillance-broadcast(ADS-B)on traffic alert and collision avoidance system(TCAS)performance, AIAA-2008-6971[R].Reston: AIAA, 2008. [4] Eric P, Alex F, Chen W Z, et al.Sense and avoid (SAA)& traffic alert and collision avoidance system(TCAS)integration for unmanned aerial systems(UAS)AIAA-2007-3004[R].Reston: AIAA, 2007. [5] Carbone C, Ciniglio U, Corraro F, et al.A novel 3D geometric algorithm for aircraft autonomous collision avoidance[C]//Proceedings of the 45th IEEE Conference on Decision and Control.Piscataway, NJ: IEEE Press, 2006: 1580-1585. [6] Luongo S, Corraro F, Ciniglio U, et al.A novel 3D analytical algorithm for autonomous collision avoidance considering cylindrical safety bubble[C]//Aerospace Conference 2010 IEEE.Piscataway, NJ: IEEE Press, 2010: 1115. [7] Finley B. Autonomous collision avoidance the technical requirements[C]//National Aerospace and Electronics Conference.Piscataway, NJ: IEEE Press, 2000: 808-813. [8] Timothy W R. Algorithms for airborne conflict detection, prevention, and resolution[C]//Digital Avionics Systems Conference.Piscataway, NJ: IEEE Press, 2004: 3.B.1-1-17. [9] Amirreza R, Kunihiko K, Takashi T, et al.Multiple UAV deconfliction via navigation functions, AIAA-2008-6626[R].Reston: AIAA, 2008. [10] James P C, Mykel J K.Analysis of open-loop and closed-loop planning for aircraft collision avoidance[C]//14th International IEEE Conference on Intelligent Transportation Systems.Piscataway, NJ: IEEE Press, 2011: 212-217. [11] 曹红强, 费向东, 刘宇, 等.基于柱体空间的短期冲突告警算法[J].四川大学学报: 自然科学版, 2009, 46(1): 65-68. Cao H Q, Fei X D, Liu Y, et al.Short-term conflict alert algorithm based on cylindrical space[J].Journal of Sichuan University: Natural Science, 2009, 46(1): 65-68(in Chinese). [12] Manolis A C, Sifis G K.Automatic commercial aircraft-collision avoidance in free flight: The three-dimensional problem[C]//IEEE Transactions on Intelligent Transportation Systems.Piscataway, NJ: IEEE Press, 2006: 242-249. [13] Giancarmine F, Demenico A, Antonio M, et al.Multi-sensor-based fully autonomous non-cooperative collision avoidance system for unmanned air vehicles[J].Journal of Aerospace Computing, Information, and Communication, 2008, 5(10): 338-360. [14] Karl D B. A geometric optimization approach to aircraft conflict resolution, AIAA-2000-4265[R].Reston: AIAA, 2000. [15] 张军. 空域监视技术的新进展及应用[J].航空学报, 2011, 32(1): 1-14.Zhang J.New development and application of airspace surveillance technology[J].Acta Aeronautica et Astronautica Sinica, 2011, 32(1): 1-14(in Chinese). [16] 颜庆津.数值分析[M].3版.北京: 北京航空航天大学出版社, 2006: 67-68. Yan Q J.Numerical analysis[M].3rd ed.Beijing: Beihang University Press, 2006: 67-68(in Chinese).
点击查看大图
计量
- 文章访问数: 871
- HTML全文浏览量: 46
- PDF下载量: 628
- 被引次数: 0