留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多尺度梯度及深度神经网络的汉字识别

潘炜深 金连文 冯子勇

潘炜深, 金连文, 冯子勇等 . 基于多尺度梯度及深度神经网络的汉字识别[J]. 北京航空航天大学学报, 2015, 41(4): 751-756. doi: 10.13700/j.bh.1001-5965.2014.0499
引用本文: 潘炜深, 金连文, 冯子勇等 . 基于多尺度梯度及深度神经网络的汉字识别[J]. 北京航空航天大学学报, 2015, 41(4): 751-756. doi: 10.13700/j.bh.1001-5965.2014.0499
PAN Weishen, JIN Lianwen, FENG Ziyonget al. Recognition of Chinese characters based on multi-scale gradient and deep neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(4): 751-756. doi: 10.13700/j.bh.1001-5965.2014.0499(in Chinese)
Citation: PAN Weishen, JIN Lianwen, FENG Ziyonget al. Recognition of Chinese characters based on multi-scale gradient and deep neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(4): 751-756. doi: 10.13700/j.bh.1001-5965.2014.0499(in Chinese)

基于多尺度梯度及深度神经网络的汉字识别

doi: 10.13700/j.bh.1001-5965.2014.0499
基金项目: 国家自然科学基金资助项目(61075021); 国家科技支撑计划资助项目(2013BAH65F01,2013BAH65F04); 广东省科技计划资助项目(2012A010701001)
详细信息
    作者简介:

    潘炜深(1990—),男,广东惠州人,硕士生,panweishen2009@gmail.com

    通讯作者:

    金连文(1968—),男,贵州都匀人,教授,lianwen.jin@gmail.com,主要研究方向为手写汉字识别、机器学习、模式识别、云计算等.

  • 中图分类号: TP391.4

Recognition of Chinese characters based on multi-scale gradient and deep neural network

  • 摘要: 介绍了一种基于多尺度滑动窗的方法提取文字的梯度直方图特征,并结合深度神经网络对印刷体汉字进行识别.针对梯度直方图的空间关系,使用可伸缩的滑动窗对图像进行分割,在不同尺度上获取文字的特征信息,有效融合汉字的全局特征和局部分块特征.实验采用5层的深度神经网络模型对国标一级3755个印刷体汉字进行分类,并应用Dropout技术防止训练过拟合,提高神经网络的泛化能力.实验准确率达到98.292%,有较好的识别性能,验证了本文多尺度梯度特征及深度神经网络模型在文字识别上的有效性.

     

  • [1] Mori K, Masuda I.Advances in recognition of Chinese characters[C]//Proceedings of the Fifth International Conference on Pattern Recognition.Miami:IEEE Computer Society Press,1980:692-702.
    [2] 丁晓青. 汉字识别研究的回顾[J].电子学报,2002,30(9):1364-1368. Ding X Q.Chinese character recognition:a review[J].Journal of Acta Electronica Sinica,2002,30(9):1364-1368(in Chinese).
    [3] 荆涛,王仲. 光学字符识别技术与展望[J].计算机工程,2003,29(2):1-2. Jing T,Wang Z.A survey of optical character recognition[J].Computer Engineering,2003,29(2):1-2(in Chinese).
    [4] Dalal N, Triggs B.Histograms of oriented gradients for humandetection[C]//IEEE Conference on Computer Vision and Pattern Recognition.San Diego,CA:IEEE Computer Society Press,2005:886-893.
    [5] Islam A, Hasan M R,Rahaman R,et al.Designing ANN using sensitivity & hypothesis correlation testing[C]//Computer and Information Technology.Dhaka:IEEE Computer Society Press,2007:1-6.
    [6] Soulie F F, Viennet E,Lamy B.Multi-modular neural network architectures:applications in optical character and human face recognition[J].International Journal of Pattern Recognition and Artificial Intelligence,1993,7(4):721-755.
    [7] Guyon I. Applications of neural networks to character recognition[J].International Journal of Pattern Recognition and Artificial Intelligence,1991,5(1-2):353-382.
    [8] Chang H D, Wang J F,Kuo S C.A Bayesian neural network for separating similar complex handwritten Chinese characters[J].Pattern Recognition Letters,1994,15(4):403-408.
    [9] Nair V, Hinton G E.Rectified linear units improve restricted boltzmann machines[C]//Proceedings of the 27th International Conference on Machine Learning.Haifa:International Machine Learning Society,2010:807-814.
    [10] Hosmer Jr D W, Lemeshow S.Applied logistic regression[M].Hoboken:John Wiley & Sons,2004:31-43.
    [11] Duan K, Keerthi S S,Chu W,et al.Multi-category classification by soft-max combination of binary classifiers[M].Berlin:Springer-Verlag Berlin Heidelberg,2003:125-134.
    [12] Hinton G E, Srivastava N,Krizhevsky A,et al.Improving neural networks by preventing co-adaptation of feature detectors[EB/OL].[2014-04-14].http://arxiv.org/abs/1207.0580.
    [13] Krizhevsky A, Sutskever I,Hinton G E.Image net classification with deep convolutional neural networks[J].Neural Information Processing Systems,2012,25(2):1097-1105.
    [14] Dahl G E, Sainath T N,Hinton G E.Improving deep neural networks for LVCSR using rectified linear units and dropout[C]//IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP).Vancouver,BC:IEEE Computer Society Press,2013:8609-8613.
    [15] Volodymyr M. Cudamat:a CUDA-based matrix class for python.Rep.UTML-TR-2009-004[R].Toronto:University of Toronto,2009.
    [16] Ojala T, Pietikäinen M,Harwood D.Performance evaluation of texturemeasures with classification based on Kullback discrimination of distributions[C]//International Conference on Pattern Recognition.Jerusalem,Israel:IEEE Computer Society Press,1994:582-585.
    [17] Ojala T, Pietikäinen M,Harwood D.A comparative study of texture measures with classification based on featured distributions[J].Pattern Recognition,1996,29(1):51-59.
    [18] Siagian C, Itti L.Gist:a mobile robotics application of context-based vision in outdoor environment[C]//Computer Vision and Pattern Recognition-Workshops.San Diego,CA:IEEE Computer Society Press,2005:88.

  • 加载中
计量
  • 文章访问数:  1277
  • HTML全文浏览量:  95
  • PDF下载量:  806
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-28
  • 修回日期:  2014-11-27
  • 网络出版日期:  2015-04-20

目录

    /

    返回文章
    返回
    常见问答