Head bone tissue extraction algorithm based on CTA image
-
摘要: 计算机断层血管造影(CTA)影像单纯根据灰度信息无法良好地分离血管组织和骨骼组织.结合CTA影像的灰度特点,提出基于改进的三维区域生长算法的骨骼组织外轮廓提取和基于改进的Snake模型的骨骼提取算法.首先结合概率论的相关知识改进区域生长判定条件的准确性,提出三维区域生长的快速的骨骼区域种子点提取方法,使得它可以获得比较准确的骨骼组织区域.之后选取Snake模型并对其进行改进,增加了影像能量信息项,使得该模型可以更好地解决当前的问题.最后给出了实验结果并和传统算法进行对比,证实所提出的骨骼组织分割提取算法效果良好.
-
关键词:
- 骨骼提取 /
- 三维分割 /
- 计算机断层血管造影(CTA) /
- 区域增长 /
- 医学影像分割
Abstract: Vascular tissue and bone tissue cannot be clearly separated based solely on grayscale information in images of computed tomography angiography (CTA). The algorithm based on the growth of three-dimensional (3D) region improved bone tissue outside the bone contour extraction and the extraction algorithm based on improved Snake model combined with the characteristics of CTA grayscale images were proposed. Combining the knowledge of probability theory to improve the accuracy of determining condition of the region growing, fast skeletal regional seed extraction method of 3D region growing was proposed. It made it possible to obtain more accurate bone tissue area. After the Snake model was selected and some improvements were made to the model, energy image information items were increased, so that the model can better solve the current problems. Finally, the experimental results were given and compared with results from the traditional algorithm. It is confirmed the proposed segmentation of bone tissue extraction algorithm works well. -
[1] Witkin A P.Scale-space filtering[C]//Proceeding International Joint Conference Artificial Intelligence.San Francisco, CA:Morgan Kaufmann Publishers Inc., 1983, 2:1019-1022. [2] DeanBidgood W.Understanding and using DICOM, the data interchange standard for biomedical imaging[J].Journal of the American Medical Informatics Association, 2007, 4(3):199-202. [3] Freeman E, Robson E, Bates B, et al.Head first design patterns[M].Cambridge:O'Reilly Media, 2005:35-40. [4] Behrens T, Rohr K, Stiehl H S.Robust segmentation of tubular structures in 3-D medical images by parametric object detection and tracking[J].IEEE Transactions on Medical Imaging, 2012, 21(8):924-933. [5] Rinkel G J E, Djibuti M, Algra A, et al.Prevalence and risk of rupture of intracranial aneurysms:A systematic review[J].Stroke, 2008, 29(1):251-256. [6] Wink O, Niessen W J, Viergever M A.Fast delineation and visualization of vessels in 3-D angiographic images[J].IEEE Transactions on Medical Imaging, 2000, 19(4):337-346. [7] Udupa J K, Samarasekara S.Fuzzy connectedness and object definition:Theory, algorithms, and applications in image segmentation[J].IEEE Transactions on Graphical Models and Image Processing, 1996, 58(3):246-261. [8] Chan F T, Vese L.Active contours without edges[J].IEEE Transactions on Image Processing, 2001, 10(2):266-277. [9] Kass M, Witkin A.Snakes:Active contour models[J].International Journal of Computer Vision, 2007, 1(4):259-268. [10] Terzopoulous D, Fleischer K.Deformable models[J].The Visual Computer, 2008, 79(1):12-49. [11] Li P H, Zhang T W.Review on active contour model (snake model)[J].Journal of Software, 2000, 11(6):751-757. [12] Li J, Yang X, Shi P.A fast level set approach to image segmentation based on Mumford-Shah model[J].Journal of Computer, 2002, 25(11):1175-1183. [13] Cremers D, Kohlberer T, Schnorr C.Shape statistics in kernel space for variation image segmentation[J].Pattern Recognition, 2003, 36(9):1929-1943. [14] Stephen M P.Image processing and analysis at IPAG[J].IEEE Transaction on Medical Imaging, 2003, 22(12):1505-1518. [15] Pardo X M, Radeva P, Cabello D.Discriminated snakes for 3D reconstruction of anatomical organs[J].Medical Image Analysis, 2003, 7(3):293-310. [16] Montagnat J, Delingette H, Ayache N.A review of deformable surfaces:Topology, geometry and deformation[J].Image and Vision Computing, 2001, 19(14):1023-1040. [17] 李天庆, 张毅, 刘志, 等.Snake模型综述[J].计算机工程与应用, 2004, 40(11):43-45. Li T Q, Zhang Y, Liu Z, et al.A review on Snake models[J].Computer Engineering, 2004, 40(11):43-45(in Chinese). [18] 倪雅樱, 胡志忠.基于Snake模型的医学图像分割[J].上海生物医学工程, 2007, 28(3):165-170. Ni Y Y, Hu Z Z.Medical image segmentation based on snake model[J].Shanghai Journal of Biomedical Engineering, 2007, 28(3):165-170(in Chinese). [19] 王蒙, 戴亚平, 王庆林.一种新的FAST-Snake跟踪方法[J].自动化学报, 2014, 40(6):1108-1115. Wang M, Dai Y P, Wang Q L.A novel FAST-Snake object tracking approach[J].Acta Automatica Sinica, 2014, 40(6):1108-1115(in Chinese).
点击查看大图
计量
- 文章访问数: 1046
- HTML全文浏览量: 79
- PDF下载量: 623
- 被引次数: 0