留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于动力学递推算法的绳系卫星系统刚柔耦合多体模型

钟睿

钟睿. 基于动力学递推算法的绳系卫星系统刚柔耦合多体模型[J]. 北京航空航天大学学报, 2015, 41(7): 1188-1195. doi: 10.13700/j.bh.1001-5965.2014.0525
引用本文: 钟睿. 基于动力学递推算法的绳系卫星系统刚柔耦合多体模型[J]. 北京航空航天大学学报, 2015, 41(7): 1188-1195. doi: 10.13700/j.bh.1001-5965.2014.0525
ZHONG Rui. Rigid-flexible coupling multibody model for the tethered satellite system based on recursive dynamics algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(7): 1188-1195. doi: 10.13700/j.bh.1001-5965.2014.0525(in Chinese)
Citation: ZHONG Rui. Rigid-flexible coupling multibody model for the tethered satellite system based on recursive dynamics algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(7): 1188-1195. doi: 10.13700/j.bh.1001-5965.2014.0525(in Chinese)

基于动力学递推算法的绳系卫星系统刚柔耦合多体模型

doi: 10.13700/j.bh.1001-5965.2014.0525
基金项目: 中央高校基本科研业务费专项资金(YWF-14-YHXY-21)
详细信息
    通讯作者:

    钟睿(1984—),男,江西赣州人,讲师,zhongruia@163.com,主要研究方向为空间多体动力学、绳系卫星动力学与控制.

  • 中图分类号: V474.292

Rigid-flexible coupling multibody model for the tethered satellite system based on recursive dynamics algorithm

  • 摘要: 利用动力学递推算法建立了空间绳系卫星系统(TSS)的铰接柔性杆动力学模型.所研究的绳系系统包含两颗刚体绳端卫星和一段连接两颗卫星的柔绳,柔绳离散为一系列球铰连接的弹性杆,考虑杆不均匀的纵向一维形变,并利用球铰的运动模拟柔绳的弯曲和扭转;然后基于递推算法推导得出了该刚柔混合离散模型的动力学方程.数值仿真结果表明:所建立的绳系卫星系统模型能够很好地模拟空间系绳的各向摆振和扭转,此外,递推算法的引入能够有效地减少离散模型动力学方程的维数,从而大幅减少计算量.

     

  • [1] Cartmell M P, McKenzie D J.A review of space tether research[J].Progress in Aerospace Sciences, 2008, 44(1): 1-21.
    [2] Hoyt R, Slostad J, Mazzoleni A P.The multi-application survivable tether (MAST) experiment, AIAA-2003-5219[R].Reston: AIAA, 2003.
    [3] Nishid S I, Kawamoto S, Okawa Y, et al.Space debris removal system using a small satellite[J].Acta Astronautica, 2009, 65(1-2): 95-102.
    [4] Wen H, Jin D P, Hu H Y.Advances in dynamics and control of tethered satellite systems[J].Acta Mechanica Sinica, 2008, 24(3): 229-241.
    [5] National Research Council.NASA space technology roadmaps and priorities: Restoring NASA's technological edge and paving the way for a new era in space[M].Washington, D.C.: The National Academies Press, 2012: 129-130.
    [6] Kawamoto S, Makida T, Sasaki F, et al.Precise numerical simulations of electrodynamic tethers for an active debris removal system[J].Acta Astronautica, 2006, 59(1-5): 139-148.
    [7] Covello F. Application of electrical propulsion for an active debris removal system: A system engineering approach[J].Advances in Space Research, 2012, 50(7): 918-931.
    [8] Grossi M. Future of tethers in space[C]//Proceedings of 4th International Conference on Tethers in Space.Hampton, VA: Science and Technology, 1995: 11-23.
    [9] Kumar K D. Review of dynamics and control of nonelectrodynamic tethered satellite systems[J].Journal of Spacecraft and Rockets, 2006, 43(4): 705-720.
    [10] Sasaki S, Tanaka K, Higuchi K, et al.A new concept of solar power satellite: Tethered-SPS[J].Acta Astronautica, 2007, 60(3): 153-165.
    [11] Quinn D A, Folta D C.A tethered formation flying concept for the SPECS mission, AAS-00-015 [R].San Diegos Califormia: AAS, 2000.
    [12] Krupa M, Poth W, Schagerl M, et al.Modeling, dynamics and control of tethered satellite systems[J].Nonlinear Dynamics, 2006, 43(1-2): 73-96.
    [13] 彭建华, 刘延柱.绳系卫星的混沌运动[J].上海交通大学学报, 1996, 30(11): 32-35. Peng J H, Liu Y Z.Chaos in the tethered satellite system[J].Journal of Shanghai Jiao Tong University, 1996, 30(11): 32-35(in Chinese).
    [14] 朱仁璋, 雷达, 林华宝.绳系卫星系统复杂模型研究[J].宇航学报, 1999, 20(3): 7-12. Zhu R Z, Lei D, Lin H B.A sophisticated dynamical model of tethered satellite systems[J].Journal of Astronautics, 1999, 20(3): 7-12(in Chinese).
    [15] Banerjee A K. Dynamics of tethered payloads with deployment rate control[J].Journal of Guidance, Control, and Dynamics, 1990, 13(4): 759-762.
    [16] Biswell B L, Puig-Suari J, Longuski J M, et al.Three-dimensional hinged-rod model for elastic aerobraking tethers[J].Journal of Guidance, Control, and Dynamics, 1998, 21(2): 286-295.
    [17] Grassi M, Cosmo M L.Attitude dynamics of the small expendable-tether deployment system[J].Acta Astronautica, 1995, 36(3): 141-148.
    [18] Lorenzini E C, Cosmo M, Vetrella S, et al.Dynamics and control of the tether elevator/crawler system[J].Journal of Guidance, Control, and Dynamics, 1989, 12(3): 404-411.
    [19] Hu Q, Jia Y H, Xu S J.Recursive dynamics algorithm for multibody systems with variable-speed control moment gyroscopes[J].Journal of Guidance, Control, and Dynamics, 2013, 36(5): 1388-1398.
    [20] 凯利S G. 机械振动[M].贾启芬, 等译.北京: 科学出版社, 2002: 151-152. Kelly S G.Mechanical vibration[M].Translated by Jia Q F, et al.Beijing: Science Press, 2002: 151-152(in Chinese).
    [21] Cosmo M L, Lorenzini E C.Tethers in space handbook[M].3rd ed.Washington D.C.: NASA, 1997: 119-126.
  • 加载中
计量
  • 文章访问数:  746
  • HTML全文浏览量:  42
  • PDF下载量:  483
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-25
  • 修回日期:  2014-09-09
  • 网络出版日期:  2015-07-20

目录

    /

    返回文章
    返回
    常见问答