Rigid-flexible coupling multibody model for the tethered satellite system based on recursive dynamics algorithm
-
摘要: 利用动力学递推算法建立了空间绳系卫星系统(TSS)的铰接柔性杆动力学模型.所研究的绳系系统包含两颗刚体绳端卫星和一段连接两颗卫星的柔绳,柔绳离散为一系列球铰连接的弹性杆,考虑杆不均匀的纵向一维形变,并利用球铰的运动模拟柔绳的弯曲和扭转;然后基于递推算法推导得出了该刚柔混合离散模型的动力学方程.数值仿真结果表明:所建立的绳系卫星系统模型能够很好地模拟空间系绳的各向摆振和扭转,此外,递推算法的引入能够有效地减少离散模型动力学方程的维数,从而大幅减少计算量.
-
关键词:
- 绳系卫星系统(TSS) /
- 多体系统 /
- 动力学递推算法 /
- 刚柔混合模型 /
- 动力学仿真
Abstract: A multibody dynamics model of hinged flexible rods was established for the spatial tethered satellite system (TSS) based on the recursive dynamics algorithm. The system was consisted of two rigid end-satellites and a flexible tether connecting them. In the model, the tether was discretized into a series of flexible rods connected by spherical hinges and the non-uniform longitude deformations of the rods were considered, whereas the bending and torsion of the tether were simulated by the motion of the spherical hinges. Then, the equation of motion of the rigid-flexible coupling multibody model was derived based on the recursive dynamics algorithm. The simulation results prove the efficiency of the proposed model in simulation spatial motion of the TSS, including tether vibrations and oscillations in different directions. The introduction of the recursive dynamics algorithm effectively decreases the dimension of the discretized model and therefore reduces the computational efforts sharply. -
[1] Cartmell M P, McKenzie D J.A review of space tether research[J].Progress in Aerospace Sciences, 2008, 44(1): 1-21. [2] Hoyt R, Slostad J, Mazzoleni A P.The multi-application survivable tether (MAST) experiment, AIAA-2003-5219[R].Reston: AIAA, 2003. [3] Nishid S I, Kawamoto S, Okawa Y, et al.Space debris removal system using a small satellite[J].Acta Astronautica, 2009, 65(1-2): 95-102. [4] Wen H, Jin D P, Hu H Y.Advances in dynamics and control of tethered satellite systems[J].Acta Mechanica Sinica, 2008, 24(3): 229-241. [5] National Research Council.NASA space technology roadmaps and priorities: Restoring NASA's technological edge and paving the way for a new era in space[M].Washington, D.C.: The National Academies Press, 2012: 129-130. [6] Kawamoto S, Makida T, Sasaki F, et al.Precise numerical simulations of electrodynamic tethers for an active debris removal system[J].Acta Astronautica, 2006, 59(1-5): 139-148. [7] Covello F. Application of electrical propulsion for an active debris removal system: A system engineering approach[J].Advances in Space Research, 2012, 50(7): 918-931. [8] Grossi M. Future of tethers in space[C]//Proceedings of 4th International Conference on Tethers in Space.Hampton, VA: Science and Technology, 1995: 11-23. [9] Kumar K D. Review of dynamics and control of nonelectrodynamic tethered satellite systems[J].Journal of Spacecraft and Rockets, 2006, 43(4): 705-720. [10] Sasaki S, Tanaka K, Higuchi K, et al.A new concept of solar power satellite: Tethered-SPS[J].Acta Astronautica, 2007, 60(3): 153-165. [11] Quinn D A, Folta D C.A tethered formation flying concept for the SPECS mission, AAS-00-015 [R].San Diegos Califormia: AAS, 2000. [12] Krupa M, Poth W, Schagerl M, et al.Modeling, dynamics and control of tethered satellite systems[J].Nonlinear Dynamics, 2006, 43(1-2): 73-96. [13] 彭建华, 刘延柱.绳系卫星的混沌运动[J].上海交通大学学报, 1996, 30(11): 32-35. Peng J H, Liu Y Z.Chaos in the tethered satellite system[J].Journal of Shanghai Jiao Tong University, 1996, 30(11): 32-35(in Chinese). [14] 朱仁璋, 雷达, 林华宝.绳系卫星系统复杂模型研究[J].宇航学报, 1999, 20(3): 7-12. Zhu R Z, Lei D, Lin H B.A sophisticated dynamical model of tethered satellite systems[J].Journal of Astronautics, 1999, 20(3): 7-12(in Chinese). [15] Banerjee A K. Dynamics of tethered payloads with deployment rate control[J].Journal of Guidance, Control, and Dynamics, 1990, 13(4): 759-762. [16] Biswell B L, Puig-Suari J, Longuski J M, et al.Three-dimensional hinged-rod model for elastic aerobraking tethers[J].Journal of Guidance, Control, and Dynamics, 1998, 21(2): 286-295. [17] Grassi M, Cosmo M L.Attitude dynamics of the small expendable-tether deployment system[J].Acta Astronautica, 1995, 36(3): 141-148. [18] Lorenzini E C, Cosmo M, Vetrella S, et al.Dynamics and control of the tether elevator/crawler system[J].Journal of Guidance, Control, and Dynamics, 1989, 12(3): 404-411. [19] Hu Q, Jia Y H, Xu S J.Recursive dynamics algorithm for multibody systems with variable-speed control moment gyroscopes[J].Journal of Guidance, Control, and Dynamics, 2013, 36(5): 1388-1398. [20] 凯利S G. 机械振动[M].贾启芬, 等译.北京: 科学出版社, 2002: 151-152. Kelly S G.Mechanical vibration[M].Translated by Jia Q F, et al.Beijing: Science Press, 2002: 151-152(in Chinese). [21] Cosmo M L, Lorenzini E C.Tethers in space handbook[M].3rd ed.Washington D.C.: NASA, 1997: 119-126.
点击查看大图
计量
- 文章访问数: 746
- HTML全文浏览量: 42
- PDF下载量: 483
- 被引次数: 0