留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高频不稳定燃烧的声学数值仿真

初敏 徐旭

初敏, 徐旭. 高频不稳定燃烧的声学数值仿真[J]. 北京航空航天大学学报, 2015, 41(7): 1215-1222. doi: 10.13700/j.bh.1001-5965.2014.0527
引用本文: 初敏, 徐旭. 高频不稳定燃烧的声学数值仿真[J]. 北京航空航天大学学报, 2015, 41(7): 1215-1222. doi: 10.13700/j.bh.1001-5965.2014.0527
CHU Min, XU Xu. Acoustic numerical simulation of high frequency combustion instability[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(7): 1215-1222. doi: 10.13700/j.bh.1001-5965.2014.0527(in Chinese)
Citation: CHU Min, XU Xu. Acoustic numerical simulation of high frequency combustion instability[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(7): 1215-1222. doi: 10.13700/j.bh.1001-5965.2014.0527(in Chinese)

高频不稳定燃烧的声学数值仿真

doi: 10.13700/j.bh.1001-5965.2014.0527
详细信息
    作者简介:

    初敏(1985—),男,山东烟台人,博士研究生,chumin@sa.buaa.edu.cn

    通讯作者:

    徐旭(1969—),男,河北张家口人,教授,xuxu@buaa.edu.cn,研究方向为气液两相燃烧流动及传热的数值仿真、超声速燃烧的数值仿真和实验研究.

  • 中图分类号: V434+.1

Acoustic numerical simulation of high frequency combustion instability

  • 摘要: 高频不稳定燃烧一直是液体火箭发动机研制过程中所要面临的重大难题之一.采用具有低色散低耗散特点的计算气动声学方法,对自燃推进剂变轨发动机(OME)的高频不稳定燃烧进行时域下的数值仿真.由Crocco的压力时滞模型对燃烧热释放和声波之间的耦合进行模拟,并对不同的时滞模型参数对稳定性结果的影响进行了分析,给出发动机的稳定性极限图,确定一阶切向及一阶径向振型为主的不稳定振型,与地面试车实验捕捉到的不稳定振型相一致.结果表明:采用计算气动声学方法对带有Crocco压力时滞模型的声波扰动方程进行时域下的数值求解,可以对发动机的高频不稳定燃烧进行成功地预测.

     

  • [1] 刘国球.液体火箭发动机原理[M].北京: 宇航出版社, 1993: 251-252.Liu G Q.The Princple of liquid rocket engine[M].Beijing: Astronautic Publishing House, 1993: 251-252(in Chinese).
    [2] Zinn B T. Pulsating combustion, advanced combustion methods[M].London: Academic Press, 1986: 113-181.
    [3] Culick F E C.A note on Rayleigh's criterion[J].Combustion Science and Technology, 1987, 56(4-6): 159-166.
    [4] Habiballah M, Lourme D, Pit F.A comprehensive model for combustion stability studies applied to the Ariane Viking engine, AIAA-1988-0086[R].Reston: AIAA, 1988: 1-7.
    [5] 尕永婧, 张会强, 王希麟.隔板对燃烧室压力高频自激振荡的抑制作用[J].清华大学学报, 2012, 52(7): 1007-1012. Ga Y J, Zhang H Q, Wang X L.Effects of baffles on self-triggered high frequency pressure oscillations in a thrust chamber[J].Journal of Tsinghua University, 2012, 52(7): 1007-1012(in Chinese).
    [6] Matthew E H, William E A, Charles L M.Analysis of self-excited combustion instabilities using two-and three-dimensional simulations[J].Journal of Propulsion and Power, 2013, 29(2): 396-409.
    [7] Pieringer J, Sattelmayer T, Fassl F.Simulation of combustion instabilities in liquid rocket engines with acoustic perturbation equations [J].Journal of Propulsion and Power, 2009, 25(5): 1020-1031.
    [8] Oberger C L, Hines W S, Falk A Y.High-temperature earth-storable propellant acoustic cavity technology, NASA N75-19460[R].California: Rocketdyne Division, 1974: 1-82.
    [9] Kim J S. Effects of turbulence on linear acoustic instability: Spatial inhomogeneity[C]//Progress in Aeronautics and Astronautics.Reston: AIAA, 1995, 169: 431-454.
    [10] Ewert R, Schröder W.Acoustic perturbation equations based on flow decomposition via source filtering[J].Journal of Computational Physics, 2003, 188(2): 365-398.
    [11] Laroche E, Habiballah M, Kuentzmann P.Numerical analysis of liquid rocket combustion instability: Preliminary 3D acoustic calculations[C]//35th Intersociety Energy Conversion Engineering Conference and Exhibit. Reston: AIAA, 2000: 1-9.
    [12] Tam C K W, Webb J C.Dispersion-relation-preserving finite difference schemes for computational acoustics[J].Journal of Computational Physics, 1993, 107(2): 262-281.
    [13] Gaitonde D V, Visbal M R.Padé-type higher-order boundary filters for the Navier-Stoke equations[J].AIAA Journal, 2000, 38(11): 2103-2112.
    [14] Tam C K W, Dong Z.Wall boundary conditions for high-order finite-difference schemes in computational aeroacoustics[J].Theoretical and Computional Fluid Dynamics, 1994, 6(5-6): 303-322.
    [15] Laudien E, Pongratz R, Pierro R, et al.Experimental procedures aiding the design of acoustic cavities[C]//Progress in Aeronautics and Astronautics.Reston: AIAA, 1995, 169: 377-402.
    [16] Harrje D T, Reardon F H.Liquid rocket combustion instabilities, NASA SP-194[R].Reston: AIAA, 1972.
    [17] Milano D, Kirkpatrick A T, Quinlan J M, et al.Computation of acoustic oscillations and combustion stability in a rocket engine with combined hub/blade baffles, AIAA-2009-4866[R].Reston: AIAA, 2009.
  • 加载中
计量
  • 文章访问数:  960
  • HTML全文浏览量:  84
  • PDF下载量:  591
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-26
  • 修回日期:  2014-10-07
  • 网络出版日期:  2015-07-20

目录

    /

    返回文章
    返回
    常见问答