Effect of sweep angle on stability and transition in a swept-wing boundary layer
-
摘要: 后掠机翼边界层流动稳定性及转捩对翼型的设计及优化有着重要的参考价值,而机翼后掠角是引起后掠机翼边界层横流失稳的关键参数之一.以NACA0012翼型为研究对象,通过求解三维可压缩Navier-Stokes方程计算了展向无限长后掠机翼的基本流场;通过求解Orr-Sommerfeld方程得到了扰动Tollmien-Schishting波演化的中性曲线及幅值曲线,研究了后掠角对后掠机翼边界层流动稳定性的影响;最后采用eN方法进行了转捩预测.研究发现,随后掠角的增大,横流强度和扰动幅值放大指数n均先增加后减小,且后掠角在40°~50°之间横流强度达到最大值.当后掠角在50°左右时,用转捩预测eN方法计算的幅值增长指数N值最大,导致转捩发生所需的初始扰动幅值最小,转捩最易发生.
-
关键词:
- 后掠角 /
- 后掠机翼 /
- 流动稳定性 /
- 线性稳定性理论(LST) /
- eN方法
Abstract: The stability and transition of swept-wing boundary layers have important reference value to the design and optimization of airfoil. The sweep angle is one of the key parameters to the cross-flow instability of swept-wing boundary layers. Based on the NACA0012 airfoil profile, the mean flow of a swept-wing boundary layer was calculated by numerically solving the three-dimensional compressible Navier-Stokes equation, then the neutral curve and the growth curve of unstable Toumien-Schlisting wave were obtained by solving the Orr-Sommerfeld equation to study the effect of the sweep angle, and the transition position was predicted by applying eN method. Study shows that with the increase of sweep angle, both the strength of the cross-flow and the amplification factor n of the disturbance amplitude increase firstly and then decrease, and the strength of the cross-flow reaches its peak value when the sweep angle is in the range of 40° to 50°. The N factor predicted by eN method is the largest one when the sweep angle is about 50°, implying that with which angle, the induce disturbance with a smaller amplitude can easily lead to the occurrence of transition.-
Key words:
- sweep angle /
- swept-wing /
- hydrodynamic stability /
- linear stability theory (LST) /
- eN method
-
[1] 周恒, 赵耕夫. 流动稳定性[M].北京: 国防工业出版社, 2004: 77-78. Zhou H, Zhao G F.Hydrodynamic stability[M].Beijing: National Defense Industry Press, 2004: 77-78(in Chinese). [2] 徐国亮, 符松. 可压缩横流失稳及其控制[J].力学进展, 2012, 42(3): 262-273. Xu G L, Fu S.The instability and control of compressible cross flows [J].Advances in Mechanics, 2012, 42(3): 262-273(in Chinese). [3] Joslin R D. Overview of laminar flow control[M].Hampton, Virginia: National Aeronautics and Space Administration, Langley Research Center, 1998: 3-7. [4] 吴永健. 横流不稳定性实验研究[D].南京: 南京航空航天大学, 2002. Wu Y J.Experimental study on crossflow instabilities in the boundary-layer of swept wing[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2002(in Chinese). [5] Boltz F W, Kenyon G C, Allen C Q.Effects of sweep angle on the boundary-layer stability characteristics of an untapered wing at low speeds[J].National Aeronautics and Space Administration, NASA Technical Note, 1960: D-338. [6] Haynes T S. Nonlinear stability and saturation of crossflow vortices in swept-wing boundary layers[D].Arizona: Arizona State University, 1996. [7] Dagenhart J R, Saric W S.Crossflow stability and transition experiments in swept-wing flow[M].National Aeronautics and Space Administration, Langley Research Center, 1999: 7-8. [8] Bippes H. Basic experiments on transition in three-dimensional boundary layers dominated by crossflow instability[J].Progress in Aerospace Sciences, 1999, 35(4): 363-412. [9] Bippes H, Müller B, Wagner M.Measurements and stability calculations of the disturbance growth in an unstable three-dimensional boundary layer[J].Physics of Fluids A: Fluid Dynamics(1989-1993), 1991, 3(10): 2371-2377. [10] Bippes H, Wiegel M, Bertolotti F.Experiments on the control of crossflow instability with the aid of suction through perforated walls[C]//IUTAM Symposium on Mechanics of Passive and Active Flow Control.Berlin: Springer, 1999, 53: 165-170. [11] Malik M R, Liao W, Li F, et al.DRE-enhanced swept-wing natural laminar flow at high Reynolds numbers, AIAA-2013-0412[R].Reston: AIAA, 2013. [12] Saric W S, Carrillo R B, Reibert M S.Nonlinear stability and transition in 3-D boundary layers[J].Meccanica, 1998, 33(5): 469-487. [13] Saric W S, Reed H L, White E B.Stability and transition of three-dimensional boundary layers[J].Annual Review of Fluid Mechanics, 2003, 35(1): 413-440. [14] 左林玄, 王晋军. 弹性与后掠角对三角翼绕流结构的影响[J].实验流体力学, 2008, 22(2): 29-33. Zuo L X, Wang J J.The effects of flexibility and sweep angle on flow around cropped delta wing[J].Journal of Experiments in Fluid Mechanics, 2008, 22(2): 29-33(in Chinese). [15] 马宝峰, 刘沛清, 魏园.大迎角下机翼后掠角对近耦合鸭式布局增升及流态的影响[J].实验流体力学, 2005, 19(3): 73-78. Ma B F, Liu P Q, Wei Y.Effects of wing sweep on lift-enhancement and flow patterns of close-coupled canard-configurations at high incidence[J].Journal of Experiments in Fluid Mechanics, 2005, 19(3): 73-78(in Chinese). [16] 刘杰, 刘沛清, 闫指江.中等后掠角三角翼前缘双涡结构的形成机理数值研究[J].空气动力学学报, 2012, 30(6): 767-771. Liu J, Liu P Q, Yan Z J.Numerical investigations of formation mechanism about a dual leading-edge vortex of a delta wing with medium leading-edge sweep angle[J].Acta Aerodynamica Sinica, 2012, 30(6): 767-771(in Chinese). [17] 左岁寒, 杨永, 李栋.基于线性抛物化稳定性方程的后掠翼边界层内横流稳定性研究[J].计算物理, 2010, 27(5): 665-670. Zuo S H, Yang Y, Li D.Investigation on cross-flow instabilities in swept-wing boundary layers with linear parabolized stability equations[J].Chinese Journal of Computational Physics, 2010, 27(5): 665-670(in Chinese). [18] 左岁寒, 杨永, 李栋, 等.基于线化稳定性理论的后掠翼边界层内横流稳定性研究[J].航空计算技术, 2009, 39(4): 34-36. Zuo S H, Yang Y, Li D, et al.Study on crossflow instability of boundary layer on a swept wing based on linear stability theory[J].Aeronautical Computing Technique, 2009, 39(4): 34-36(in Chinese). [19] 黄章峰, 逯学志, 于高通.机翼边界层的横流稳定性分析和转捩预测[J].空气动力学学报, 2014, 32(1): 14-20. Huang Z F, Lu X Z, Yu G T.Cross-flow instability analysis and transition prediction of airfoil boundary layer[J].Acta Aerodynamica Sinica, 2014, 32(1): 14-20(in Chinese). [20] 韩步璋, 黄奕裔, 张其威, 等.NACA0012翼型跨音速测压实验研究[J].南京航空航天大学学报, 1987, 19(2): 92-102. Han B Z, Huang Y Y, Zhang Q W, et al.An experiment of pressure measurement for NACA0012 airfoil in a transonic wind tunnel[J].Journal of Nanjing Aeronautical Institute, 1987, 19(2): 92-102(in Chinese). [21] Huang Z F, Cao W, Zhou H.The mechanism of breakdown in laminar-turbulent transition of a supersonic boundary layer on a flat plate-temporal mode[J].Science in China Series G: Mechanics and Astronomy, 2005, 48(5): 614-625.
点击查看大图
计量
- 文章访问数: 1392
- HTML全文浏览量: 208
- PDF下载量: 582
- 被引次数: 0