Influence of quantum dots and TiO2 photoanode parameters on electron lifetimes and performance of photonode
-
摘要: 通过对P25TiO2光阳极薄膜厚度、敏化的量子点种类及量子点敏化方法研究,探讨了使用连续离子层吸附反应法的敏化方法(SILAR)时,P25TiO2薄膜厚度与光阳极电子寿命的关系,以及量子点种类、共敏化工艺对光阳极光电性能的影响.采用电化学阻抗(EIS)、开路电压衰减(OCVD)及紫外-可见吸收方法,对影响光阳极光电性能的TiO2薄膜厚度、量子点种类及共敏化工艺因素进行测试分析.实验结果表明:当光阳极薄膜厚度为12μm时,电子复合几率最小,光阳极的电子寿命相对最长;采用连续离子层吸附反应法(SILAR)对多种量子点共敏化的光阳极(TiO2/CdS/CdSe/ZnS)与单一量子点敏化的光阳极(TiO2/CdS)相比,短路电流提高了34%,光转换效率提高了42%;合适的共敏化工艺也有助于提高光阳极的电子寿命、光谱吸收范围和吸收强度.Abstract: Effects of film thickness of P25TiO2 photoanode, different types of quantum dots sensitized and method of quantum dots co-sensitization, which are the factors of interest, on P25TiO2 photoanode were analyzed. The relationship between P25TiO2 film thickness and electron lifetimes were investigated by the method of successive ionic layer absorption and reaction (SILAR). Besides, the influence of quantum dots type and method of quantum dots co-sensitization on photoelectrochemical performance of photoanode was studied. Electrochemical impedance spectra (EIS), open circuit voltage decay (OCVD) and UV-Vis absorption spectra were used to measure and analyze the factors which influence the photoelectrochemical performance and electron lifetimes of P25TiO2 photoanode. The results indicate that P25TiO2 with the film thickness of 12μm exhibits the minimum recombination losses and longer electron lifetimes. Furthermore, the short circuit current and power conversion efficiency of co-sensitized photoanode (TiO2/CdS/CdSe/ZnS) increase 34% and 42% respectively compared to those of single sensitized photoanode (TiO2/CdS). Besides, appropriate film thickness of P25TiO2 photoanode and method of co-sensitization are important factors to increase the electron lifetimes of photoanode, the absorption spectrum and intensity of photoanode.
-
[1] 杨健茂, 胡向华, 田启威, 等.量子点敏化太阳能电池研究进展[J].材料导报, 2012, 25(12): 1-4. Yang J M, Hu X H, Tian Q W, et al.Progress of quantum dot research sensitized solar cells[J].Materials Review, 2012, 25(12): 1-4(in Chinese). [2] 杨峰, 蔡芳共, 柯川, 等.TiO2纳米管阵列在太阳能电池中应用的研究进展[J].材料导报, 2010, 24(6): 50-52. Yang F, Cai F G, Ke C, et al.Research progress in application of TiO2 nanotube arrays to solar cells[J].Materials Review, 2010, 24(6): 50-52(in Chinese). [3] Zaban A, Micic O I, Gregg B A, et al.Photosensitization of nanoporous TiO2 electrodes with InP quantum dots[J].Langmuir, 1998, 14(12): 3153-3156. [4] Lee Y-L, Lo Y-S.Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe[J].Advanced Functional Materials, 2009, 19(4): 604-609. [5] Chang J A, Im S H, Lee Y H, et al.Panchromatic photon-harvesting by hole-conducting materials in inorganic-organic heterojunction sensitized-solar cell through the formation of nanostructured electron channels[J].Nano letters, 2012, 12(4): 1863-1867. [6] Santra P K, Kamat P V.Mn-doped quantum dot sensitized solar cells: A strategy to boost efficiency over 5%[J].Journal of the American Chemical Society, 2012, 134(5): 2508-2511. [7] Lee J-W, Son D-Y, Ahn T-K, et al.Quantum-dot-sensitized solar cell with unprecedentedly high photocurrent[J].Scientific Reports, 2013, 3: 1050. [8] Chen H, Zhu L, Hou Q, et al.ZnOHF nanostructure-based quantum dots-sensitized solar cells[J].Journal of Materials Chemistry, 2012, 22: 23344-23347. [9] Chen H N, Zhu L Q, Liu H C, et al.Growth of ZnO nanowires on fibers for one-dimensional flexible quantum dot-sensitized solar cells[J].Nanotechnology, 2012, 23(7): 075402. [10] Chen H, Li W, Hou Q, et al.A general deposition method for ZnO porous films: Occlusion electrosynthesis[J].Electrochimica Acta, 2011, 56(25): 9459-9466. [11] Leventis H C, O'Mahony F, Akhtar J, et al.Transient optical studies of interfacial charge transfer at nanostructured metal oxide/PbS quantum dot/organic hole conductor heterojunctions[J].Journal of the American Chemical Society, 2010, 132(8): 2743-2750. [12] Hossain Md A, Jennings J R, Koh Z Y, et al.Carrier generation and collection in CdS/CdSe-sensitized SnO2 solar cells exhibiting unprecedented photocurrent densities[J].ACS Nano, 2011, 5(4): 3172-3181. [13] Tian J J, Gao R, Zhang Q F, et al.Enhanced performance of CdS/CdSe quantum dot cosensitized solar cells via homogeneous distribution of quantum dots in TiO2 film[J].The Journal of Physical Chemistry C, 2012, 116(35): 18655-18662. [14] Lee H, Wang M, Chen P, et al.Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process[J].Nano Letters, 2009, 9(12): 4221-4227. [15] Kim J, Choi H, Nahm C, et al.The effect of a blocking layer on the photovoltaic performance in CdS quantum-dot-sensitized solar cells[J].Journal of Power Sources, 2011, 196(23): 10526-10531. [16] Panigrahi S, Basak D.Morphology driven ultraviolet photosensitivity in ZnO-CdS composite[J].Journal of Colloid and Interface Science, 2011, 364(1): 10-17. [17] Robel I, Subramanian V, Kuno M, et al.Quantum dot solar cells.Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films[J].Journal of the American Chemical Society, 2006, 128(7): 2385-2393. [18] Shen Q, Kobayashi J.Diguna L J.Effect of ZnS coating on the photovoltaic properties of CdSe quantum dot-sensitized solar cells[J].Journal of Applied Physics, 2008, 103(8): 084304. [19] Kamat P V. TiO2 Nanostructures: Recent physical chemistry advances[J].The Journal of Physical Chemistry C, 2012, 116(22): 11849-11851. [20] Chen X B, Mao S S.Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications[J].Chemical Reviews, 2007, 107(7): 2891-2959. [21] Lee W, Min S K, Dhas V, et al.Chemical bath deposition of CdS quantum dots on vertically aligned ZnO nanorods for quantum dots-sensitized solar cells[J].Electrochemistry Communications, 2009, 11(1): 103-106. [22] Gao R, Wang L, Geng Y, et al.Interface modification effects of 4-tertbutylpyridine interacting with N3 molecules in quasi-solid dye-sensitized solar cells[J].Physical Chemistry Chemical Physics, 2011, 13(22): 10635-10640. [23] Gao R, Wang L, Ma B, et al.Mg (OOCCH3)2 interface modification after sensitization to improve performance in quasi-solid dye-sensitized solar cells[J].Langmuir, 2010, 26(4): 2460-2465. [24] 左志鹏, 魏爱香, 林康保, 等.染料敏化太阳能电池的电子传输和复合特性研究[J].人工晶体学报, 2012, 41(6): 1595-1600. Zuo Z P, Wei A X, Lin K B, et al.Research on electron transport and recombination characteristics in dye-sensitized solar cells[J].Journal of Synthetic Crystals, 2012, 41(6): 1595-1600(in Chinese). [25] Lei B X, Liao J Y, Zhang R, et al.Ordered crystalline TiO2 nanotube arrays on transparent FTO glass for efficient dye-sensitized solar cells[J].Journal of Physical Chemistry C, 2010, 114(35): 15228-15233. [26] Kuang D, Ito S, Wenger B, et al.High molar extinction coefficient heteroleptic ruthenium complexes for thin film dye-sensitized solar cells[J].Journal of the American Chemical Society, 2006, 128(12): 4146-4154. [27] Mora-Seroó I, Giménez S, Fabregat-Santiago F, et al.Recombination in quantum dot sensitized solar cells[J].Accounts of Chemical Research, 2009, 42(11): 1848-1857. [28] Yan K, Zhang L, Qiu J, et al.A quasi-quantum well sensitized solar cell with accelerated charge separation and collection[J].Journal of American Chemical Society, 2013, 135(25): 9531-9539. [29] Wang Q, Ito S, Gratzel M, et al.Characteristics of high efficiency dye-sensitized solar cells[J].The Journal of Physical Chemistry B, 2006, 110(50): 25210-25221. [30] Bisquert J, Fabregat-Santiago F, Mora-Sero I, et al.Electron lifetime in dye-sensitized solar cells: Theory and interpretation of measurements[J].Journal of Physical Chemistry C, 2009, 113(40): 17278-17290. [31] Gonzalez-Pedro V, Xu X, Mora-Sero I, et al.Modeling high-efficiency quantum dot sensitized solar cells[J].ACS Nano, 2010, 4(10): 5783-5790. [32] Zaban A, Greenshtein M, Bisquert J.Determination of the electron lifetime in nanocrystalline dye solar cells by open-circuit voltage decay measurements[J].Chemphyschem, 2003, 4(8): 859-864. [33] Paulose M, Shankar K, Oomman K V, et al.Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells[J].Journal of Physics D: Applied Physics, 2006, 39(12): 2498-2503. [34] Li T-L, Lee Y-L, Teng H.High-performance quantum dot-sensitized solar cells based on sensitization with CuInS2 quantum dots/CdS heterostructure[J].Energy and Environmental Science, 2012, 5(1): 5315-5324. [35] Hsiao P T, Teng H.An advanced model for determining charge recombination kinetic parameters in dye-sensitized solar cells[J].Journal of the Taiwan Institute of Chemical Engineers, 2010, 41(6): 676-681.
点击查看大图
计量
- 文章访问数: 894
- HTML全文浏览量: 241
- PDF下载量: 441
- 被引次数: 0