ICT distribution-based contact model for delay tolerant networks
-
摘要: 在容迟网络中,掌握节点之间的接触间隔时间(ICT)的特性,能够为网络性能分析、路由协议设计以及算法优化等研究提供理论指导和帮助,但目前的ICT模型往往缺乏普适性.通过对节点运动做出一般性假设,基于可靠性数学方法,给出了一个基于ICT分布的接触模型——IDCM.该模型证明了两个移动节点之间的ICT服从指数分布,且指数分布的参数仅与两个节点的历史接触次数和累积ICT有关.在随机方向(RD)移动模型、随机路点(RWP)移动模型、北京市出租车网络、口袋交换网4个数据集上进行了仿真验证,并与基于统计拟合参数的指数分布模型进行对比.仿真实验结果表明,IDCM能够准确反映节点对之间的接触间隔时间分布,且模型准确性优于基于统计拟合参数的指数分布模型.
-
关键词:
- 容迟网络(DTN) /
- 接触间隔时间(ICT) /
- 指数分布 /
- 参数估计 /
- 可靠性数学
Abstract: Characteristics of inter contact time (ICT) are essential for delay tolerant networks (DTNs), which are beneficial to network performance analysis, routing protocol design and algorithm optimization, but existing ICT models lack general applicability. Based on the general assumptions, a reliability mathematical model was proposed, which is called ICT distribution-based contact model (IDCM), to demonstrate that the ICT between two mobile nodes was exponentially distributed and to verify that the exponential parameter of node pairs only related to the historical contact numbers and cumulative ICTs. Based on random direction (RD) mobility model dataset, random way point (RWP) mobility model dataset, Beijing taxi network dataset, pocket switch network dataset, extensive experimental simulations were conducted and comparison to parameter-aggregated exponential model was made. The simulation results show that IDCM characterizes contacts of node pairs accurately and have better accuracy than parameter-aggregated exponential model. -
[1] Ahmed S A, Salil S K S.Characterization of a large-scale delay tolerant network[C]//Local Computer Networks (LCN).Piscataway,NJ:IEEE Press,2010:56-63. [2] Karagiannis T, le Boudec J,Vojnovic M.Power law and exponential decay of intercontact times between mobile devices[J].IEEE Transactions on Mobile Computing,2010,9(10):1377-1390. [3] Zhu H Z, Li M L,Fu L Y,et al.Impact of traffic influxes:Revealing exponential intercontact time in urban VANETs[J].IEEE Transactions on Parallel and Distributed Systems,2011,22(8):1258-1266. [4] Li Y, Jiang Y R,Jin D P,et al.Energy-efficient optimal opportunistic forwarding for delay-tolerant networks[J].IEEE Transactions on Vehicular Technology,2010,59(9):4500-4512. [5] Sharma G, Mazumdar R R.Delay and capacity tradeoffs for wireless ad hoc networks with random mobility[J].IEEE/ACM Transactions on Networking,2007,15(5):981-992. [6] Muhammad A, Simon R.A simulation study of common mobility models for opportunistic networks[C]//Simulation Symposium.Piscataway,NJ:IEEE Press,2008:43-50. [7] Muhammad A, Simon R.Characteristics of common mobility models for opportunistic networks[C]//ACM Second Workshop Performance Monitoring and Measurement of Heterogeneous Wireless and Wired Networks.New York:ACM,2007:105-109. [8] Zhang X L, Kurose J,Levine B N,et al.Study of a bus-based disruption-tolerant network:Mobility modeling and impact on routing[C]//Proceedings of the Annual International Conference on Mobile Computing and Networking.New York:ACM,2007:195-206. [9] Hu Y T, Wang H Q,Xia C H,et al.On the distribution of inter contact time for DTNs[C]//Local Computer Networks (LCN).Piscataway,NJ:IEEE Press,2012:152-155. [10] Sharma G, Mazumdar R R.Scaling laws for capacity and delay in wireless ad hoc networks with random mobility[C]//IEEE International Conference on Communications.Piscataway,NJ:IEEE Press,2004:3869-3873. [11] Spyropoulos T, Psounis K,Raghavendra C S.Performance analysis of mobility-assisted routing[C]//Proceedings of the International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc).New York:ACM,2006:49-60. [12] Li Y,Hui P, Jin D P,et al.Evaluating the impact of social selfishness on the epidemic routing in delay tolerant networks[J].IEEE Communications Letters,2010,14(11):1026-1028. [13] Niu J W,Guo J K, Cai Q S,et al.Predict and spread:An efficient routing algorithm for opportunistic networking[C]//Wireless Communications and Networking Conference.Piscataway,NJ:IEEE Press,2011:498-503. [14] James S, Richard G,Jon C,et al.The Cambridge/haggle dataset[EB/OL].Cambridge:Cambridge University,2005(2013-01-15).http://crawdad.cs.dartmouth.edu/cambridge/haggle/. [15] Erdds P, R Wi A.On random graphs[J].Computer Engineering,1959,109(4):339-340. [16] 戴冠中,王林. 复杂网络的Scale-free性、Scale-free现象及其控制[M].北京:科学出版社,2009:1-5. Dai G Z,Wang L.Scale-free property,Scale-free phenomenon and control of complex network[M].Beijing:Science Press,2009:1-5(in Chinese). [17] 冯允成,吕春连, 杜瑞甫.随机网络及其应用[M].北京:北京航空学院出版社,1987:1-8. Feng Y C,Lv C L,Du R F.Random network and its application[M].Beijing:Beihang University Press,1987:1-8(in Chinese). [18] Erd s P, Rényi A.On the existence of a factor of degree one of a connected random graph[J].Acta Mathematica Academiae Scientiarum Hungarica,1966,17(3-4):359-368. [19] Cai H, Eun D Y.Crossing over the bounded domain:From exponential to power-law intermeeting time in mobile ad hoc networks[J].IEEE/ACM Transactions on Networking,2009,17(5):1578-1591. [20] Zhu H Z, Fu L Y,Xue G T,et al.Recognizing exponential inter-contact time in VANETs[C]//2010 Proceedings IEEE INFOCOM.Piscataway,NJ:IEEE Press,2010:101-105.
点击查看大图
计量
- 文章访问数: 839
- HTML全文浏览量: 117
- PDF下载量: 663
- 被引次数: 0