1D-consolidation analysis based on UH model considering time effect
-
摘要: 结合考虑时间效应的统一硬化(UH)模型得到一维固结下土的一维应力-应变关系,以此建立一维固结控制微分方程,可以统一考虑土的主、次固结变形.采用差分方法对单面排水固结问题进行了分析,加载初期不透水层处存在有效应力减小的松弛现象,推导了不透水层处有效应力随时间减小的公式并进行分析.随后,采用数值方法分析了次固结系数、超固结度、压缩回弹系数等因素对固结的影响规律,分析结果也验证了所得公式的结论.此外,通过室内试验对控制方程预测规律进行了验证分析.当主固结基本完成后,变形主要由次固结产生,基于这个条件推导了平均固结度与时间的关系,该公式可以用于计算固结基本完成需要的时间.
-
关键词:
- 统一硬化(UH)模型 /
- 蠕变 /
- 固结度 /
- 沉降变形 /
- 孔压
Abstract: The soil stress-strain relationship under 1D consolidation condition was derived from the unified hardening (UH) model considering time effect. Based on this, a governing differential equation of 1D consolidation was established, which could simultaneously describe the deformation behavior of both primary and secondary consolidation. The one direction drainage consolidation problem was analyzed by the differential method. Since there is the phenomenon of relaxation that the effective stress pressure near the impermeable layer would decrease during the initiation of loading, a formula that can reflect the decrease of effective stress by time was deduced. Then, numerical analysis of the influence of secondary consolidation parameter, over consolidation ratio and the consolidation and swelling index was made and the results prove the conclusion of the formula. Besides, the laboratory tests were used to confirm the numerical prediction results of the governing equation. Depending on the condition that when the primary consolidation was almost finished, the main deformation was produced by secondary consolidation, a relationship between average degree of consolidation and time was deduced, which could be used to predict the time when primary consolidation would be finished. -
[1] 高彦斌. 饱和软粘土一维非线性流变——固结耦合分析[J].工程力学,2006,23(8):116-121. Gao Y B.One-dimensional nonlinear creep-consolidation analysis of saturated clay[J].Engineering Mechanics,2006,23(8):116-121(in Chinese). [2] 胡亚元,江涛. 次固结系数对准超固结土固结特性的影响[J].浙江大学学报:工学版,2011,45(6):1088-1093. Hu Y Y,Jiang T.Impact of secondary consolidation coefficient on consolidation characteristics of quasi over-consolidated clay[J].Journal of Zhejiang University:Engineering Science,2011,45(6):1088-1093(in Chinese). [3] 仇玉良,丁洲祥. 一维小变形主、次固结耦合理论模型分析[J].岩土力学,2012,33(7):1957-1964. Qiu Y L,Ding Z X.Study of coupling theory of one-dimensional small-strain primary and secondary consolidation model[J].Rock and Soil Mechanics,2012,33(7):1957-1964(in Chinese). [4] 刘忠玉,冯桂云, 王喜军.考虑流变特性的正常固结土一维固结分析[J].郑州大学学报:理学版,2013,45(2):110-114. Liu Z Y,Feng G Y,Wang X J.One-dimensional consolidation of normally consolidated soils considering their rheological behaviors[J].Journal of Zhengzhou University:Natural Science,2013,45(2):110-114(in Chinese). [5] Ma B N, Muhunthan B,Xie X Y.Stress history effects on 1-D consolidation of soft soils:A rheological model[J].International Journal for Numerical and Analytical Methods in Geomechanics,2013,37(16):2671-2689. [6] 袁静,龚晓南, 益德清.岩土流变模型的比较研究[J].岩石力学与工程学报,2001,20(6):772-779. Yuan J,Gong X N,Yi D Q.Comparison study on rheological constitutive models[J].Chinese Journal of Rock Mechanics and Engineering, 2001,20(6):772-779(in Chinese). [7] 殷建华,Clark J I. 土体与时间相关的一维应力-应变性状、弹粘塑性模型和固结分析[J].岩土力学,1994,15(3):65-80. Yin J H,Clark J I.One-dimensional time dependent stress-strain behavior of soil,elastic visco-plastic modeling,and consolidation analysis[J].Rock and Soil Mechanics,1994,15(3):65-80(in Chinese). [8] 殷建华,Clark J I. 土体与时间相关的一维应力-应变性状、弹粘塑性模型和固结分析(续)[J].岩土力学,1994,15(4):65-75. Yin J H,Clark J I.One-dimensional time dependent stress-strain behavior of soil,elastic visco-plastic modeling,and consolidation analysis(continuation)[J].Rock and Soil Mechanics,1994,15(4):65-75(in Chinese). [9] Yin J H,Graham J, Clark J I,et al.Modelling unanticipated pore-water pressures in soft clays[J].Canadian Geotechnical Journal,1994,31(5):773-778. [10] Yao Y P, Kong L M,Hu J.An elastic-viscous-plastic model for overconsolidated clays[J].Science China Technological Sciences,2013,56(2):441-457. [11] Bjerrum L. Engineering geology of Norwegian normally-consolidated marine clays as related to settlements of buildings[J].Geotechnique,1967,17(2):83-118. [12] Yao Y P, Hou W,Zhou A N.UH model:Three-dimensional unified hardening model for overconsolidated clays[J].Geotechnique,2009,59(5):451-469. [13] Luo T, Qin Z H,Feng X,et al.A symmetrisation method for non-associated unified hardening model[J].Computers and Geotechnics,2013,52:38-45. [14] Mandel J. Consolidation des sols(étude mathématique)[J].Geotechnique,1953,3(7):287-299. [15] 姚仰平,侯伟. K0超固结土的统一硬化模型[J].岩土工程学报,2008,30(3):316-322. Yao Y P,Hou W.A unified hardening model for K0 consolidated clays[J].Chinese Journal of Geotechnical Engineering,2008,30(3):316-322(in Chinese). [16] Arulanandan K, Shen C K,Young R B.Undrained creep behaviour of a coastal organic silty clay[J].Geotechnique,1971,21(4):359-375. [17] Sekiguchi H. Theory of undrained creep rupture of normally consolidated clay based on elasto-viscoplasticity[J].Soils and Foundations,1984,24(1):129-147. [18] Hicher P Y. Comportement mécanique des argiles saturées sur divers chemins de sollicitations monotones et cycliques:Application à une modélisation élastoplastique et viscoplastique[D].Paris:Université Paris,1985. [19] 李西斌. 软土流变固结理论与试验研究[D].杭州:浙江大学,2005. Li X B.Theoretical and experimental studies on rheological consolidation of soft soil[D].Hangzhou:Zhejiang University,2005(in Chinese).
点击查看大图
计量
- 文章访问数: 939
- HTML全文浏览量: 114
- PDF下载量: 419
- 被引次数: 0