Design of tensile device of nanomaterials and quantitative analysis
-
摘要: 以压电陶瓷为主体设计了一种用于单体纳米材料原位拉伸变形实验的装置,为了实现力学性能的定量化测量,在该装置中加装了用于测量力的悬臂梁针尖,通过悬臂梁针尖的变形可实现纳米材料力学性能测试中的定量化性能测试.利用该自主设计的纳米材料拉伸仪,以利用热蒸发法制备的非晶氧化硅纳米线为实例,在光学显微镜和扫描电子显微镜下进行了原位力学性能测试实验.实验结果显示:该原位纳米材料拉伸装置可以有效地实现纳米材料的拉伸变形操作,同时对施加在材料样品本身上的力学信号给出定量化的结果.Abstract: Based on a piezoelectric ceramic, a new experimental device was designed which could be used to conduct the in-situ tensile deformation test for one dimensional nanomaterials. A cantilever tip, which was used to measure the force, was also introduced to do the quantitative measurements during the mechanical properties experiments of nanomaterials, the force loaded to the sample can be calculated via the deformation of the cantilever tip. With this homemade in-situ nanomaterials tensile device, in-situ tensile experiments under both optical microscopy and scanning electron microscopy of single SiO2 nanowires prepared by thermal evaporation method were conducted. The experimental results indicate that this device can conduct the tensile deformation test effectively and give the quantitative result of the force signal loaded to the material sample itself at the same time.
-
Key words:
- piezoelectric ceramics /
- cantilever /
- in-situ test /
- quantitative result /
- mechanical property
-
[1] Duan X, Huang Y,Agarwal R,et al.Single-nanowire electrically driven lasers[J].Nature,2003,421(6920):241-245. [2] Park W I, Jun Y H,Jung S W,et al.Excitonic emissions observed in ZnO single crystal nanorods[J].Applied Physics Letters,2003,82(6):964-966. [3] Gudiksen M S, Lauhon L J,Wang J F,et al.Growth of nanowire superlattice structures for nanoscale photonics and electronics[J].Nature,2002,415(6872):617-620. [4] Melosh N A, Boukai A,Diana F,et al.Ultrahigh-density nanowire lattices and circuits[J].Science,2003,300(5616):112-115. [5] Cao A,Wei Y G, Ma E.Grain boundary effects on plastic deformation and fracture mechanisms in Cu nanowires:Molecular dynamics simulations[J].Physical Review B,2008,77(17):195429. [6] Swygenhoven H V, Derlet P M,Frøseth A G.Stacking fault energies and slip in nanocrystalline metals[J].Nature Materials,2004,3(6):399-403. [7] Swygenhoven H V, Derlet P M.Grain-boundary sliding in nanocrystalline fcc metals[J].Physical Review B,2001,64(22):224105. [8] Derlet P M, Swygenhoven H V,Hasnaoui A.Atomistic simulation of dislocation emission in nanosized grain boundaries[J].Philosophical Magazine,2003,83(31-34):3569-3575. [9] Marcio L F N, Edgar D Z.Diffusion processes in vitreous silica revisited[J].European Journal of Glass Science and Technology Part B,2007,48(4):201-217. [10] Muralidharan K, Simmons J H,Deymier P A,et al.Molecular dynamics studies of brittle fracture in vitreous silica:Review and recent progress[J].Journal of Non-crystalline Solids,2005,351(18):1532-1542. [11] Mott N F. The viscosity of vitreous silicon dioxide[J].Philosophical Magazine B,1987,56(2):257-262. [12] Bruckner R. Properties and structure of vitreous silica[J].Journal of Non-crystalline Solids,1970,5:123-175. [13] Zheng K, Wang C C,Cheng Y Q,et al.Electron-beam-assisted superplastic shaping of nanoscale amorphous silica[J].Nature Communications,2010,1:24. [14] Yue Y H, Zheng K.Strong strain rate effect on the plasticity of amorphous silica nanowires[J].Applied Physics Letters,2014,104(23):231906. [15] Yue Y H,Zheng K,Zhang L,et al.Origin of high elastic strain in amorphous silica nanowires[J].Science China Materials,2015,58(4):274-280. [16] 秦艳,张晓娜, 郑坤,等.非晶SiO2纳米线的合成及其显微结构和光学性质的研究[J].电子显微学报,2008,27(2):102-107. Qin Y,Zhang X N,Zheng K,et al.Synthesis and photoluminescence of amorphous SiO2 nanowires[J].Journal of Chinese Electron Microscopy,2008,27(2):102-107(in Chinese).
点击查看大图
计量
- 文章访问数: 850
- HTML全文浏览量: 128
- PDF下载量: 495
- 被引次数: 0