留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

瞬态传热问题的微分求积和精细积分求解方法

金晶 邢誉峰 廖选平 张海瑞 唐念华

金晶, 邢誉峰, 廖选平, 等 . 瞬态传热问题的微分求积和精细积分求解方法[J]. 北京航空航天大学学报, 2015, 41(8): 1526-1531. doi: 10.13700/j.bh.1001-5965.2014.0626
引用本文: 金晶, 邢誉峰, 廖选平, 等 . 瞬态传热问题的微分求积和精细积分求解方法[J]. 北京航空航天大学学报, 2015, 41(8): 1526-1531. doi: 10.13700/j.bh.1001-5965.2014.0626
JIN Jing, XING Yufeng, LIAO Xuanping, et al. Application of differential quadrature and precise integration methods in analysis of transient heat transfer[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(8): 1526-1531. doi: 10.13700/j.bh.1001-5965.2014.0626(in Chinese)
Citation: JIN Jing, XING Yufeng, LIAO Xuanping, et al. Application of differential quadrature and precise integration methods in analysis of transient heat transfer[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(8): 1526-1531. doi: 10.13700/j.bh.1001-5965.2014.0626(in Chinese)

瞬态传热问题的微分求积和精细积分求解方法

doi: 10.13700/j.bh.1001-5965.2014.0626
详细信息
    作者简介:

    金晶(1986-),女,湖北随州人,硕士研究生,jinjbuaa@163.com

    通讯作者:

    邢誉峰(1964-),男,吉林农安人,教授,xingyf@buaa.edu.cn,主要研究方向为结构动力学.

  • 中图分类号: O241.81;O321

Application of differential quadrature and precise integration methods in analysis of transient heat transfer

  • 摘要: 给出了瞬态传热问题的高效高精度求解方法,该方法分别用微分求积法(DQM)和精细积分法(PIM)离散空间域和时间域.微分求积方法除了精度高、效率高之外,处理复杂边界条件的灵活性也优于有限元法(FEM).用精细积分法处理一阶瞬态传热微分控制方程,不需要增加额外自由度,还可以达到计算机精度.给出了隔热结构4种边界条件下的数值结果.并就上表面恒温、其他面绝热边界条件计算结果与有限元分析结果进行了对比,算例分析表明,采用微分求积和精细积分法布置少量的节点就可以达到较高的精度.

     

  • [1] Civan F, Sliepcevich C M.Application of differential quadrature to transport processes[J].Journal of Mathematical Analysis and Applications,1983,93(1):206-221.
    [2] Bert C W, Jang S K,Striz A G.Two new approximate methods for analyzing free vibration of structural components[J].AIAA Journal,1988,26(5):612-618.
    [3] Bert C W, Malik M.The differential quadrature method for irregular domains and application to plate vibration[J].International Journal of Mechanical Sciences,1996,38(6):589-606.
    [4] Jang S K, Bert C W,Striz A G.Application of differential quadrature to static analysis of structural components[J]. International Journal for Numerical Methods in Engineering,1989,28(3):561-577.
    [5] Bert C W, Wang X,Striz A G.Differential quadrature for static and free vibration analysis of anisotropic plates[J].International Journal of Solids and Structures,1993,30(13):1737-1744.
    [6] Liu F L,Liew K M. Static analysis of Reissner-Mindlin plates by differential quadrature element method[J].ASME Journal of Applied Mechanics,1998,65(3):705-710.
    [7] Wang X, Bert C W.A new approach in applying differential quadrature and free vibration analysis of beams and plates[J].Journal of Sound and Vibration,1993,162(3):566-572.
    [8] Xing Y F, Liu B.A differential quadrature analysis of dynamic and quasi-static magneto-thermo-elastic stresses in a conducting rectangular plate subjected to an arbitrary variation of magnetic field[J].International Journal of Engineering Science,2010,48(12):1944-1960.
    [9] Shu C, Richards B E.Application of generalized differential quadrature to solve two-dimensional incompressible Navier-Stokes equations[J].International Journal for Numerical Methods in Fluids,1992,15(17):791-798.
    [10] Malik M, Bert C W.Differential quadrature solution for steady state incompressible and compressible lubrication problems[J].ASME Journal of Teratology,1994,116(2):296-302.
    [11] Quan J R, Chang C T.New insights in solving distributed system equations by the quadrature methods-I.Analysis[J].Computers in Chemical Engineering,1989,13(7):779-788.
    [12] Quan J R, Chang C T.New insights in solving distributed system equations by the quadrature methods-II.Numerical experiments[J].Computers in Chemical Engineering,1989,13(9):1017-1024.
    [13] Tseng A A, Chen T C,Zhao F Z.Direct sensitivity coefficient method for solving two-dimensional inverse heat conduction problems by finite-element scheme[J].Numerical Heat Transfer,Part B:Fundamentals,1995,27(3):291-307.
    [14] 薛齐文,杨海天, 胡国俊.共轭梯度法求解瞬态传热组合边界条件多宗量反问题[J].应用基础与工程科学学报,2004,12(2):113-120. Xue Q W,Yang H T,Hu G J.Solving inverse heat conduction problems with multi-variables of boundary conditions in transient-state via conjugate gradient method[J].Journal of Basic Science and Engineering,2004,12(2):113-120(in Chinese).
    [15] France D M, Chiang T.Analytic solution to inverse heat conduction problem with periodicity[J].Journal of Heat Transfer,1980,102(3):579-581.
    [16] 张驰,石宏,张硕,等. 基于无网格边界元法的瞬态热传导问题研究[J].科学技术与工程,2013,13(26):7638-7643. Zhang C,Shi H,Zhang S,et al.Study on transient heat conduction by meshless boundary element method[J].Science Technology and Engineering,2013,13(26):7638-7643(in Chinese).
    [17] Xing Y F, Liu B.High-accuracy differential quadrature finite element method and its application to free vibrations of thin plate with curvilinear domain[J].International Journal for Numerical Methods in Engineering,2009,80(13):1718-1742.
    [18] 钟万勰. 结构动力方程的精细时程积分法[J].大连理工大学学报,1994,34(2):131-136. Zhong W X.On precise time-integration method for structural dynamics[J].Journal of Dalian University of Technology,1994,34(2):131-136(in Chinese).
  • 加载中
计量
  • 文章访问数:  892
  • HTML全文浏览量:  75
  • PDF下载量:  558
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-13
  • 网络出版日期:  2015-08-20

目录

    /

    返回文章
    返回
    常见问答