Wave propagation in cracked elastic media based on EMT using FEM
-
摘要: 了解和掌握弹性波在含有裂纹介质中的传播规律是开发利用页岩气等非常规油气资源中的关键科学问题.本文基于数值模拟的优点,采用商用有限元软件Nastran模拟弹性波在含裂纹介质中的激发及传播方式,分析了弹性波在该介质中裂纹微结构(密度和纵横比)对弹性波传播动力学特性的依赖程度.结果表明:有限元方法(FEM)可以用于该问题的研究;Hudson等效介质理论(EMT)不适用泊松比近0.5的材料;裂纹密度、纵横比的增大会减小纵波(P波)波速值,以及衰减位移时域响应的首波振幅,且裂纹密度对于该材料的各向异性的影响要远大于纵横比的作用.
-
关键词:
- 有限元方法(FEM) /
- Hudson理论 /
- 频率 /
- 裂纹数密度 /
- 横纵比
Abstract: Understanding mechanism of wave propagation in elastic media with cracks is the key scientific issue in exploration and extraction of shale and other unconventional oil and gas resources. Based on the advantages of the numerical simulation, the excitation and propagation of elastic wave in the cracked media were simulated by Nastran, a commercial solver for finite element analysis. Then the dependence of dynamic characteristics of propagation in that kind of media was further analyzed based on the microstructure (crack density, aspect ratio). Some conclusions were obtained as follows. Finite element method (FEM) would be effectively used to study the issue. Hudson's effective medium theory (EMT) could not be applied into materials with Poisson's ratio of nearly 0.5. Increasing crack density and aspect ratio would reduce the primary wave (P wave) velocity, with decaying the displacement amplitude of the P wave in time-domain. Crack density of the medium exposes greater effect on the anisotropy than the aspect ratio.-
Key words:
- finite element method (FEM) /
- Hudson's theory /
- frequency /
- crack number density /
- aspect ratio
-
[1] Guéguen Y,Kachanov M.Mechanics of crustal rocks[M].Vienna:Springer,2011:73-125. [2] Mackenzie J K.The elastic constants of a solid containing spherical holes[J].Proceedings of the Physical Society.Section B.1950,63(1):1. [3] Eshelby J D.The determination of the elastic field of an ellipsoidal inclusion,and related problems[J].Proceedings of the Royal Society of London.Series A.Mathematical and Physical Sciences,1957,241(1226):376-396. [4] Bristow J R.Microcracks,and the static and dynamic elastic constants of annealed and heavily cold-worked metals[J].British Journal of Applied Physics,1960,11(2):81. [5] Walsh J B.The effect of cracks on the compressibility of rock[J].Journal of Geophysical Research,1965,70(2):381-389. [6] Hudson J A.Overall properties of a cracked solid[C]//Mathematical Proceedings of the Cambridge Philosophical Society.Cambridge:Cambridge University Press,1980,88(2):371-384. [7] Hudson J A.Seismic wave propagation through material containing partially saturated cracks[J].Geophysical Journal International,1988,92(1):33-37. [8] Hudson J A.Wave speeds and attenuation of elastic waves in material containing cracks[J].Geophysical Journal International,1981,64(1):133-150. [9] 曾新吾,韩开锋,张光莹.含裂缝介质中的弹性波传播特性[M].北京:科学出版社,2013:1-5,18-40,98-121.Zeng X W,Han K F,Zhang G Y.Elastic wave propagation characteristics in cracked media[M].Beijing:Science Press,2013:1-5,18-40,98-121(in Chinese). [10] Courant R.Variational methods for the solution of problems of equilibrium and vibrations[J].Bulletin of American Mathematical Society,1943,49(1):1-23. [11] Aoki S,Kishimoto K,Kondo H,et al.Elastodynamic analysis of crack by finite element method using singular element[J].International Journal of Fracture,1978,14(1):59-68. [12] Taylor L M,Chen E,Kuszmaul J S.Microcrack-induced damage accumulation in brittle rock under dynamic loading[J].Computer Methods in Applied Mechanics and Engineering,1986,55(3):301-320. [13] Ma G W,Hao H,Zhou Y X.Modeling of wave propagation induced by underground explosion[J].Computers and Geotechnics,1998,22(3):283-303. [14] Garboczi E J,Berryman J G.Elastic moduli of a material containing composite inclusions:Effective medium theory and finite element computations[J].Mechanics of Materials,2001,33(8):455-470. [15] Grechka V,Kachanov M.Effective elasticity of rocks with closely spaced and intersecting cracks[J].Geophysics,2006,71(3):D85-D91. [16] Gaede O,Karpfinger F,Jocker J,et al.Comparison between analytical and 3D finite element solutions for borehole stresses in anisotropic elastic rock[J].International Journal of Rock Mechanics and Mining Sciences,2012,51:53-63. [17] Mavko G,Mukerji T,Dvorkin J.The rock physics handbook:Tools for seismic analysis of porous media[M].Cambridge:Cambridge University Press,2009:21-76. [18] Thomsen L.Weak elastic anisotropy[J].Geophysics,1986,51(10):1954-1966. [19] 王勖成.有限单元法[M].北京:清华大学出版社,2003: 468-520.Wang X C.Finite element method[M].Beijing:Tsinghua University Press,2003:468-520(in Chinese). [20] Liu N,Wang Y,Li M,et al.Nonlinear buckling analyses of a small-radius carbon nanotube[J].Journal of Applied Physics,2014,115(15):154301.
点击查看大图
计量
- 文章访问数: 760
- HTML全文浏览量: 63
- PDF下载量: 380
- 被引次数: 0