留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无传感器的工业机器人负载识别方法

陈友东 季旭东 谷平平 胡国栋

束长勇, 张生俊, 黄沛霖, 等 . 基于微多普勒的空间锥体目标微动分类[J]. 北京航空航天大学学报, 2017, 43(7): 1387-1394. doi: 10.13700/j.bh.1001-5965.2016.0500
引用本文: 陈友东, 季旭东, 谷平平, 等 . 无传感器的工业机器人负载识别方法[J]. 北京航空航天大学学报, 2015, 41(9): 1595-1599. doi: 10.13700/j.bh.1001-5965.2014.0669
SHU Changyong, ZHANG Shengjun, HUANG Peilin, et al. Micro-motion classification of spatial cone target based on micro-Doppler[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(7): 1387-1394. doi: 10.13700/j.bh.1001-5965.2016.0500(in Chinese)
Citation: CHEN Youdong, JI Xudong, GU Pingping, et al. Identifying method of load for sensorless industrial robot[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(9): 1595-1599. doi: 10.13700/j.bh.1001-5965.2014.0669(in Chinese)

无传感器的工业机器人负载识别方法

doi: 10.13700/j.bh.1001-5965.2014.0669
基金项目: 国家“863”计划(2014AA041601)
详细信息
    通讯作者:

    陈友东(1973—),男,安徽庐江人,副教授,chenyd@buaa.edu.cn,主要研究方向为工业机器人.

  • 中图分类号: TP242

Identifying method of load for sensorless industrial robot

  • 摘要: 工业机器人在使用过程中,由于末端负载的变化导致机械振动,因此需要识别机器人末端负载去调整相应的控制参数来保证其具有良好的运动表现.提出一种基于伺服电机输出力矩,不需要额外传感器的机器人负载识别方法.根据机器人静力学模型,计算出静止状态下末端空载和负载情况下的输出力矩差异,由此得到负载计算模型.对埃夫特的QH165机器人进行了试验,在工作空间内随机选择10个测量点,在末端空载和负载的情况下读取电机输出的力矩,计算得到末端负载.结果表明:识别的负载与已知负载相同,试验表明该方法的可行性.

     

  • [1] Ko C M,Chung G J,Kin D H.Designing of heavy duty handling robot (HEDURI-I robot design)[C]//Proceedings of the 2009 IEEE International Conference on Mechatronics.Piscataway,NJ:IEEE Press,2009:1-6.
    [2] Feng Y L,Qu D K,Xu F,et al.Analysis and compensation for the dynamic error of the FPD glass substrates transfer robot[C]//IEEE International Conference on Robotics and Automation.Piscataway,NJ:IEEE Press,2011:1-3.
    [3] Lu D M,Zhang C Q,Fan Y Z,et al.The kinematic self-calibration method and simulation of one palletizing robot[C]//Proceedings of the 8th World Congress on Intelligent Control and Automation.Piscataway,NJ:IEEE Press,2010:6424-6427.
    [4] Guang X Q,Wang J D.Mechanical design and kinematic analysis of a new kind of palletizing robot[C]//Mechanic Automation and Control Engineering.Piscataway,NJ:IEEE Press,2011:199-202.
    [5] Tsumugiwa T,Watanabe Y,Yokogawa R.Robot motion control using mechanical load adjuster with motion measurement interface for human-robot cooperation[C]//Intelligent robots and systems.Piscataway,NJ:IEEE Press,2009:467-472.
    [6] Song Y F,Wang H G,Gao W B,et al.Dynamic deformation analysis of a spot welding robot under high speed and heavy load working condition[C]//IEEE International Conference on Robotics and Biomimetics.Piscataway,NJ:IEEE Press,2013:2043-2048.
    [7] Seki K,Nakamura H,Iwasaki M,et al.Suppression of resonant vibration due to angular transmission errors of reduction gearing in industrial robots[C]//IEEE International Conference on Mechatronics (ICM).Piscataway,NJ:IEEE Press,2013:835-840.
    [8] Huang L S,Qu D K,Xu F.Motion control strategy of industrial direct drive robot for vibration suppression[C]//Intelligent Control and Automation.Piscataway,NJ:IEEE Press,2010:2430-2433.
    [9] Hamon P,Gautier M,Garrec P,et al.Dynamic identification of robot with a load-dependent joint friction model[C]//Robotics Automation and Mechatronics.Piscataway,NJ:IEEE Press,2010:129-135.
    [10] Hamon P,Gautier M,Garrec P.Dynamic identification of robots with a dry friction model depending on load and velocity[C]//Intelligent Robots and Systems.Piscataway,NJ:IEEE Press,2010:6187-6193.
    [11] Paul R P.Robot manipulators:Mathematics,programming,and control[M].Cambridge:MIT Press,1981:157-195.
    [12] Coiffet P.Robot technology:Interaction with the environment[M].2nd ed.Englewood Cliffs:Prentice-Hall,1983:102-128.
    [13] Amitabha M.Adaptation in biological sensory-motor systems:A model for robotic control[C]//Intelligent Robots and Computer Vision.Bellingham,WA:SPIE,1984,521:243-247.
    [14] Amitabha M,Ballard D H.Self-calibration in robot manipulators[C]//Robotics and Automation.Piscataway,NJ:IEEE Press,1985:1050-1057.
    [15] Olsen H B,Bekey G A.Identification of parameters in models of robots with rotary joints[C]//Robotics and Automation.Piscataway,NJ:IEEE Press,1985:1045-1050.
    [16] Atkeson C G,An C H,Hollerbach J M.Estimation of inertial parameters of manipulator loads and links[J].International Journal of Robotics Research,1986,5(3):101-119.
    [17] Swevers J,Verdonck W,de Schutter J.Dynamic model identification for industrial robots[J].IEEE Control Systems Magazine,2007,27(5):58-71.
  • 期刊类型引用(23)

    1. 杨书涵,韦楠楠,张兴敢. 基于残差网络ResNet18-SVM的弹道中段目标识别. 现代雷达. 2024(04): 8-14 . 百度学术
    2. 张裕,李建鑫,朱勇建,马腾. 基于雷达RCS数据的空间目标识别算法研究. 电子测量技术. 2024(10): 19-26 . 百度学术
    3. 王彩云,姚晨,吴钇达,王佳宁,李晓飞,黄盼盼. 基于改进Dijkstra算法与时频域滤波的雷达目标识别. 系统工程与电子技术. 2022(10): 3090-3095 . 百度学术
    4. 赵锋,徐志明,刘蕾,艾小锋. 弹道目标特征提取研究现状与展望. 信息对抗技术. 2022(03): 15-32 . 百度学术
    5. 徐志明,艾小锋,刘晓斌,吴其华,赵锋. 基于散射中心滑动特性的双基地雷达锥体目标微动特征提取方法. 电子学报. 2021(03): 461-469 . 百度学术
    6. 李鹏,冯存前,许旭光,唐子翔. 一种利用贝叶斯优化的弹道目标微动分类网络. 西安电子科技大学学报. 2021(05): 139-148 . 百度学术
    7. 陈帅,冯存前,张蓉. 基于离散正弦调频变换的中段多微动目标分离. 北京航空航天大学学报. 2020(02): 371-378 . 本站查看
    8. 李江,冯存前,王义哲,贺思三. 基于深度学习的弹道目标智能分类. 系统工程与电子技术. 2020(06): 1226-1234 . 百度学术
    9. 陈帅,冯存前,许旭光. 基于Viterbi算法和ROMP的多弹道目标分离与特征提取. 火力与指挥控制. 2020(03): 22-27 . 百度学术
    10. 李江,冯存前,王义哲,许旭光. 一种用于锥体目标微动分类的深度学习模型. 西安电子科技大学学报. 2020(03): 105-112 . 百度学术
    11. 蔡尚君,左东广,朱晓菲. 运动因素对雷达引信回波多普勒频率的影响. 电光与控制. 2019(01): 55-60 . 百度学术
    12. 张馨元,齐玉涛,林刚. 含旋转部件的动态目标特征提取方法研究. 电波科学学报. 2019(01): 65-69 . 百度学术
    13. 李美兰,姚金杰,张丕状,孙晓阳. 基于微多普勒的膛内弹丸姿态测试方法研究. 中国测试. 2019(03): 127-134 . 百度学术
    14. 魏嘉琪,张磊,刘宏伟. 宽带雷达三维干涉测量弹道目标微动参数估计. 电子与信息学报. 2019(04): 787-794 . 百度学术
    15. 韩立珣,田波,冯存前,贺思三. 进动弹道目标平动补偿与分离. 北京航空航天大学学报. 2019(07): 1459-1466 . 本站查看
    16. 李江,冯存前,王义哲,许旭光. 基于深度卷积神经网络的弹道目标微动分类. 空军工程大学学报(自然科学版). 2019(04): 97-104 . 百度学术
    17. 李江,冯存前,王义哲,许旭光. 基于AlexNet-BiLSTM网络的锥体目标微动分类. 信号处理. 2019(11): 1835-1843 . 百度学术
    18. 魏嘉琪,张磊,刘宏伟,盛佳恋. 曲线交叠外推的微动多目标宽带分辨算法. 电子与信息学报. 2019(12): 2889-2895 . 百度学术
    19. 张梓鑫,姚金杰. 基于形态分层的膛内高速运动体摆动角度测量方法研究. 国外电子测量技术. 2019(12): 11-15 . 百度学术
    20. 陈帅,冯存前,张蓉. 基于DSFMT的旋转微动目标分离. 空军工程大学学报(自然科学版). 2019(05): 40-44 . 百度学术
    21. 陈帅,冯存前,李晓华. 基于时频图像背景差分的中段多弹道目标分离. 弹箭与制导学报. 2019(06): 66-70 . 百度学术
    22. 魏嘉琪,张磊,刘宏伟,周叶剑. 基于相位测距的宽带雷达弹道目标微动几何参数估计. 电子与信息学报. 2018(09): 2227-2234 . 百度学术
    23. 蔡尚君,朱晓菲,左东广. 锥形载体运动对雷达引信回波的影响探讨. 飞航导弹. 2018(10): 85-89+94 . 百度学术

    其他类型引用(8)

  • 加载中
计量
  • 文章访问数:  1185
  • HTML全文浏览量:  123
  • PDF下载量:  15921
  • 被引次数: 31
出版历程
  • 收稿日期:  2014-10-28
  • 网络出版日期:  2015-09-20

目录

    /

    返回文章
    返回
    常见问答