Aerodynamic design of high-aspect-ratio flying wing based on criteria
-
摘要: 从设计实际出发,为切实提高气动性能,开展了大展弦比飞翼无人机(UAV)的气动设计及分析研究.在设计分析过程中,依据飞翼无人机的特征,提出了气动设计准则;基于设计准则,采用更新设计的策略,结合变可信度数值模拟、代理模型优化方法构建了优化设计框架;针对飞翼无人机开展了参数化表达、无限插值网格自动生成以及多轮更新优化,得到了优化推荐构型;应用γ-Reθt转捩模型方法对优化构型的气动性能进行了细致地验证分析.研究结果表明:通过气动设计,飞翼无人机设计构型很好地契合了设计准则,其巡航升阻比相比最初的原始构型提高了14%,γ-Reθt转捩模型能较细致地分析大展弦比飞翼的流动特征.Abstract: To improve aerodynamic performance of flying wing from design reality, aerodynamic design and analysis of high-aspect-ratio flying wing unmanned aerial vehicle (UAV) were conducted. In design and analysis process, according to features of flying wing, aerodynamic design criteria have been proposed. Based on design criteria, a design optimization framework, using updated design strategies, was built which combined variable fidelity numerical simulation and surrogated model optimization method. Flying wing UAV was carried out with parametric expression, automatic mesh generation of transfinite interpolation (TFI), and multi-round optimization. And then recommended configuration was obtained and validated for detailed aerodynamic performance by γ-Reθt transition model method. The results show that design configuration of flying wing UAV agrees well with design criteria, cruise lift-to-drag ratio of UAV increases 14% compared to the original configuration, γ-Reθt transition model method can analyze the detailed aerodynamic characteristics of high-aspect-ratio flying wing UAV.
-
Key words:
- flying wing /
- design criteria /
- optimal design /
- transition model /
- validated analysis
-
[1] Saeed T I,Graham W R.Conceptual design for a laminar-flying-wing aircraft,AIAA-2012-0868[R].Reston:AIAA,2012. [2] Sevant N E,Bloor M G,Wilson M J.Aerodynamic design of a flying wing using response surface method[J].Journal of Aircraft,2000,7(4):562-569. [3] Green J E.Greener by design:The technology challenge[J].The Aeronautical Journal,2002,106(1056):57-113. [4] Martinez V R.Flying wings.A new paradigm for civil aviation [J].Acta Polytechnica,2007,47(1):32-43. [5] Dmitriev V G,Shkadov L M,Denisov V E,et al.The flying-wing concept-chances and risks,AIAA-2003-2887[R].Reston:AIAA,2003. [6] Sears W R.Flying wing airplanes:The XB-35/YB-49 program,AIAA-1980-3036[R].Reston:AIAA,1980. [7] Begin L.The Northrop flying wing prototypes,AIAA-1983-1047[R].Reston:AIAA,1983. [8] Wood R M,Bauer S X S.Flying wings/flying fuselage,AIAA-2001-0311[R].Reston:AIAA,2001. [9] Grellmann H W.B-2 aerodynamic design,AIAA-1990-1802[R].Reston:AIAA,1990. [10] Liebeck R H.Design of the blended wing body subsonic transport[J].Journal of Aircraft,2004,41(1):10-25. [11] Mialon B,Fol T,Bonnaud C.Aerodynamic optimization of subsonic flying wing configurations,AIAA-2002-2931[R].Reston:AIAA,2002. [12] Qin L,Vavalle A,Le Moigne A,et al.Aerodynamic studies blended wing body aircraft,AIAA-2002-5448[R].Reston:AIAA,2002. [13] Leifsson L,Ko A,Mason W H,et al.Multidisciplinary design optimization of blended-wing-body transport aircraft with distributed propulsion[J].Aerospace Science and Technology,2013,25(1):16-28. [14] 胡添元.飞翼布局飞机总体多学科设计优化研究[D].南京:南京航空航天大学,2010.Hu T Y.Multidisciplinary design optimization for flying wing aircraft preliminary design[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2010(in Chinese). [15] 鲍君波,王钢林,武哲.飞翼布局气动方案优选和试验验证[J].北京航空航天大学学报,2012,38(2):180-184.Bao J B,Wang G L,Wu Z.Optimization and experimental verification for aerodynamic scheme of flying-wing[J].Journal of Beijing University of Aeronautics and Astronautics,2012,38(2):180-184(in Chinese). [16] 甘文彪.近空间低雷诺数无人机气动数值模拟及设计研究[D].西安:西北工业大学,2014.Gan W B.Research on aerodynamic numerical simulation and design of near space low-Reynolds unmanned aerial vehicles[D].Xi'an:Northwestern Polytechnical University,2014(in Chinese).
点击查看大图
计量
- 文章访问数: 1029
- HTML全文浏览量: 123
- PDF下载量: 624
- 被引次数: 0