留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于混合优化算法的空间拦截轨道优化设计

高晓光 汤洪 端军红

高晓光, 汤洪, 端军红等 . 基于混合优化算法的空间拦截轨道优化设计[J]. 北京航空航天大学学报, 2015, 41(9): 1574-1581. doi: 10.13700/j.bh.1001-5965.2014.0673
引用本文: 高晓光, 汤洪, 端军红等 . 基于混合优化算法的空间拦截轨道优化设计[J]. 北京航空航天大学学报, 2015, 41(9): 1574-1581. doi: 10.13700/j.bh.1001-5965.2014.0673
GAO Xiaoguang, TANG Hong, DUAN Junhonget al. Space interception orbit optimization design based on hybrid optimal algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(9): 1574-1581. doi: 10.13700/j.bh.1001-5965.2014.0673(in Chinese)
Citation: GAO Xiaoguang, TANG Hong, DUAN Junhonget al. Space interception orbit optimization design based on hybrid optimal algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(9): 1574-1581. doi: 10.13700/j.bh.1001-5965.2014.0673(in Chinese)

基于混合优化算法的空间拦截轨道优化设计

doi: 10.13700/j.bh.1001-5965.2014.0673
基金项目: 国家自然科学基金(60774064)
详细信息
    通讯作者:

    高晓光(1957—),女,辽宁鞍山人,教授,cxg2012@nwpu.edu.cn,主要研究方向为航空火力控制、武器系统作战效能分析.

  • 中图分类号: V448.234;TB491

Space interception orbit optimization design based on hybrid optimal algorithm

  • 摘要: 基于改进高斯法(IGM)和遗传算法(GA)的混合优化算法,为解决空间拦截轨道燃料消耗和转移时间的综合最优问题,提出一种空间拦截轨道设计方法.首先,引入牛顿-拉夫逊迭代法对原始高斯法进行改进,解决原始高斯法在解算空间拦截轨道时收敛速度慢、转移角范围小等问题;接着,给出并证明改进高斯法迭代方程有唯一解的充分必要条件.当给定初始轨道参数时,用此条件判断可否用椭圆轨道进行转移;然后给出转移时间,最大脉冲速度等约束条件,对编码方式进行改进,给出混合优化算法的计算步骤;最后以空间拦截轨道优化问题为例,进行仿真分析.仿真结果表明,与传统优化算法相比,混合优化算法收敛的遗传代数少,耗时短,能够较好地运用于空间拦截轨道的设计.

     

  • [1] 晁涛,王松艳,王子才,等.基于组合优化算法的临近空间飞行器轨迹优化[J].宇航学报,2012,33(2):183-188.Chao T,Wang S Y,Wang Z C,et al.Near space vehicle trajectory optimization approach based on hybrid SVM and GA algorithm[J].Journal of Astronautics,2012,33(2):183-188(in Chinese).
    [2] Shen H J,Tsiotras P.Optimal two-impulse rendezvous using multiple-revolution Lambert solutions[J].Journal of Guidance,Control,and Dynamics,2003,26(1):50-61.
    [3] 周荻,张刚,孙胜.有限推力椭圆轨道近距离拦截方法[J].宇航学报,2010,31(7):1763-1767.Zhou D,Zhang G,Sun S.A thrust-limited short-distance interception scheme on elliptical orbit[J].Journal of Astronautics,2010,31(7):1763-1767(in Chinese).
    [4] Spencer D B,Kim Y H.Optimal spacecraft rendezvous using genetic algorithms[J].Journal of Spacecraft and Rockets,2002,39(6):859-865.
    [5] 黄勇,李小将,张东来,等.混合遗传算法在最优Lambert轨道转移设计中的应用[J].飞行力学,2013,31(3):269-272.Huang Y,Li X J,Zhang D L,et al.Application of hybrid genetic algorithm in optimal Lambert orbital transfer design[J].Flight Dynamics,2013,31(3):269-272(in Chinese).
    [6] Kim D Y,Woo B,Park S Y,et al.Hybrid optimization for multiple-impulse reconfiguration trajectories of satellite formation flying[J].Advances in Space Research,2009,44(1):1257-1269.
    [7] Battin R H.An introduction to the mathematics and methods of astrodynamics[M].Revised Edition.New York:AIAA,1999.
    [8] 邓泓,仲惟超,孙兆伟,等.基于遗传算法的卫星攻击路径规划方法研究[J].宇航学报,2009,30(4):1587-1592.Deng H,Zhong W C,Sun Z W,et al.Method research of satellite attacking path planning based on genetic algorithm[J].Journal of Astronautics,2009,30(4):1587-1592(in Chinese).
    [9] 陈统,徐世杰.基于遗传算法的最优Lambert双脉冲转移[J].北京航空航天大学学报,2007,33(3):273-277.Chen T,Xu S J.Optimal Lambert two-impulse transfer using genetic algorithm[J].Journal of Beijing University of Aeronautics and Astronautics,2007,33(3):273-277(in Chinese).
    [10] 高怀,朱战霞,刘剑.基于遗传算法的连续推力最短时间转移轨道设计[J].西北工业大学学报,2012,30(2):187-191.Gao H,Zhu Z X,Liu J.An effective minimum-time orbital transfer design under continuous thrust[J].Journal of Northwestern Polytechnical University,2012,30(2):187-191(in Chinese).
    [11] Danchick R.Gauss meets newton again: How to make Gauss orbit determination from two position vectors more efficient and robust with Newton-Raphson iterations[J].Applied Mathematics and Computation,2008,195(2):364-375.
    [12] Abdelkhalik O,Mortari D.N-impulse orbit transfer using genetic algorithms[J].Journal of Spacecraft and Rockets,2007,44(2):456-460.
    [13] 齐映红,曹喜滨.基于遗传算法的最优多脉冲交会轨道设计[J].哈尔滨工业大学学报,2008,40(9):1345-1348.Qi Y H,Cao X B.Design of multiple-impulsive rendezvous trajectory using genetic algorithms[J].Journal of Harbin Institute of Technology,2008,40(9):1345-1348(in Chinese).
    [14] 王威,于志坚.航天器轨道确定-模型与算法[M].北京:国防工业出版社,2007:76-87.Wang W,Yu Z J.Orbit determination-modeling and algorithm[M].Beijing:Defense Industry Press,2007:76-87(in Chinese).
    [15] Srinivas M,Patnaik L M.Adaptive probabilities of crossover and mutation in genetic algorithm[J].IEEE Transaction on Systems,Man and Cybernetics,1994,24(4):656-666.
  • 加载中
计量
  • 文章访问数:  1108
  • HTML全文浏览量:  149
  • PDF下载量:  831
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-30
  • 网络出版日期:  2015-09-20

目录

    /

    返回文章
    返回
    常见问答