留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于子目标进化的高维多目标优化算法

雷宇曜 姜文志 刘立佳 马向玲

雷宇曜, 姜文志, 刘立佳, 等 . 基于子目标进化的高维多目标优化算法[J]. 北京航空航天大学学报, 2015, 41(10): 1910-1917. doi: 10.13700/j.bh.1001-5965.2014.0706
引用本文: 雷宇曜, 姜文志, 刘立佳, 等 . 基于子目标进化的高维多目标优化算法[J]. 北京航空航天大学学报, 2015, 41(10): 1910-1917. doi: 10.13700/j.bh.1001-5965.2014.0706
LEI Yuyao, JIANG Wenzhi, LIU Lijia, et al. Many-objective optimization based on sub-objective evolutionary algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(10): 1910-1917. doi: 10.13700/j.bh.1001-5965.2014.0706(in Chinese)
Citation: LEI Yuyao, JIANG Wenzhi, LIU Lijia, et al. Many-objective optimization based on sub-objective evolutionary algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(10): 1910-1917. doi: 10.13700/j.bh.1001-5965.2014.0706(in Chinese)

基于子目标进化的高维多目标优化算法

doi: 10.13700/j.bh.1001-5965.2014.0706
基金项目: 国防预研项目(2014CX-C201-FW);国家自然科学基金青年科学基金(61002006)
详细信息
    作者简介:

    雷宇曜(1984-),男,陕西丹凤人,博士研究生,2669116897@qq.com

    通讯作者:

    姜文志(1964-),男,山东莱州人,教授,ytjwz@sohu.com,主要研究方向为武器装备与作战指挥一体化技术.

  • 中图分类号: TP181

Many-objective optimization based on sub-objective evolutionary algorithm

  • 摘要: 多目标优化问题是工程应用中的常见问题,已有的方法在解决3个目标以上的高维优化问题时效果欠佳.如何进行有效的个体选择是求解高维多目标优化问题的关键.针对该问题,提出了求解高维多目标优化问题的子目标进化算法.从理论上证明了多目标优化问题Pareto非支配解的求取,可通过子目标函数值排序,先行选择进化种群中部分非支配解;然后,根据排序信息有选择性地比较进化种群中的元素,减少了比较次数,从而快速获得非支配解集.同时,提出归一化函数差值的Minkowski距离"k近邻"距离计算方法,在进化过程中应用到密度函数中,加速了收敛速度.同当前求解高维多目标优化的算法,在对标准测试函数的计算性能上进行比较,统计结果显示了所提算法在性能上的优势.

     

  • [1] 孔维健,丁进良,柴天佑.高维多目标进化算法研究综述[J].控制与决策,2010,25(3):321-326.Kong W J,Ding J L,Chai T Y.Survey on large-dimensional multi-objective evolutionary algorithms[J].Control and Decision,2010,25(3):321-326(in Chinese).
    [2] 公茂果,焦李成,杨咚咚,等.进化多目标优化算法研究[J].软件学报,2009,20(2):271-289.Gong M G,Jiao L C,Yang D D,et al.Evolutionary multi-objective optimization algorithm[J].Journal of Software,2009,20(2):271-289(in Chinese).
    [3] Deb K,Pratap A,Agarwal S,et al.A fast and elitist multiobjective genetic algorithm:NSGA-II[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
    [4] Zitzler E,Laumanns M,Thiele L.SPEA2:Improving the strength Pareto evolutionary algorithm,TIK-Rep103[R].Lausanne:Swiss Federal Institute of Technology,2001.
    [5] Corne D W,Jerram N R,Knowles J D,et al.PESA-Ⅱ:Region-based selection in evolutionary multi-objective optimization[C]∥Proceeding of the Genetic and Evolutionary Computation Conference,GECCO 2001.San Francisco:Morgan Kaufmann Publishers,2001:283-290.
    [6] Khare V,Yao X,Deb K.Performance scaling of multi-objective evolutionary algorithms[C]∥Proceeding of the 2nd Conference on Evolutionary Multi-Criterion Optimization,EMO 2003.Berlin:Springer-Verlag,2003:376-390.
    [7] Bandyopadhyay S,Bhattacharya R.Solving multi-objective parallel machine scheduling problem by a modified NSGA-II[J].Applied Mathematical Modelling,2013,37(10-11):6718-6729.
    [8] Saxena D K,Deb K.Non-linear dimensionality reduction procedure for certain large-dimensional multi-objective optimization problems:Employing correntropy and a novel maximum variance unfolding[C]∥Proceedings of the 4th International Conference on Evolutionary Multi-Criterion Optimization.Berlin:Springer-Verlag,2007:772-787.
    [9] Hernández-Diaz A G,Santana-Quintero L V,Coello Coello C A,et al.Pareto-adaptiveε-dominance[J].Evolutionary Computation,2007,15(4):493-517.
    [10] 刘立佳,李相民,颜骥.解决高维多目标优化的分组进化算法[J].四川大学学报,2013,45(1):118-122.Liu L J,Li X M,Yan J.Group divided dimensional reduction evolutionary algorithm for multi-objective pptimization[J].Journal of Sichuan University,2013,45(1):118-122(in Chinese).〖JP〗
    [11] Wagner T,Beume N,Naujoks B.Pareto-,aggregation-,and indicator-based methods in many-objective optimization[C]∥Lecture Notes in Computer Science.Berlin:Springr-Verlag,2007:742-756.
    [12] Hughes E J.Multiple single objective Pareto sampling[C]∥Congress on Evolutionary Computation (CEC03).Piscataway,NJ:IEEE Press,2003:2678-2684.
    [13] di Piero F.Many objectives evolutionary algorithms and applications to water resources engineering[D].Exeter:University of Exeter,2006.
    [14] 巩敦卫,季新芳,孙晓燕.基于集合的高维多目标优化问题的进化算法[J].电子学报,2014,42(1):77-83.Gong D W,Ji X F,Sun X Y.Solving many-objective optimization problems using set-based evolutionary algorithms[J].Acta Electronica Sinica,2014,42(1):77-83(in Chinese).
    [15] Brockhoff D,Zitziler E.Are all objectives necessary On dimensionality reduction in evolutionary multi objective optimization[C]∥Parallel Problem Solving from Nature.Berlin:Springer,2006:533-542.
    [16] Brockhoff D,Zitziler E.Objective reduction in evolutionary multi objective optimization:Theory and applications[J].Evolutionary Computation,2009,17(2):135-166.
    [17] Jaimes A L,Coello C A C,Chakraborty D,et a1.Objective reduction using a feature selection technique[C]∥Proceedings of the Genetic and Evolutionary Computation Conference(GECCO 08).Atlanta:ACM Press,2008:673-680.
    [18] Deb K,Thiele L,Laumanns M,et a1.Scalable multi objective optimization test problems[C]∥Congress on Evolutionary Computation(CEC02).Piscataway,NJ:IEEE Press,2002:825-830.
    [19] Knowles J,Corne D.On metrics for comparing non-dominated sets[C]∥Proceeding of the IEEE Congress on Evolutionary Computation.Piscataway,NJ:IEEE Press,2002:711-716.
    [20] 时宝,王兴平,盖明久.泛函分析引论及其应用[M].北京:国防工业出版社,2009:104-110.Shi B,Wang X P,Gai M J.Introduction to functional analysis with application[M].Beijing:National Defense Industry Press,2009:104-110(in Chinese).
  • 加载中
计量
  • 文章访问数:  854
  • HTML全文浏览量:  24
  • PDF下载量:  610
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-17
  • 修回日期:  2015-02-13
  • 网络出版日期:  2015-10-20

目录

    /

    返回文章
    返回
    常见问答