Many-objective optimization based on sub-objective evolutionary algorithm
-
摘要: 多目标优化问题是工程应用中的常见问题,已有的方法在解决3个目标以上的高维优化问题时效果欠佳.如何进行有效的个体选择是求解高维多目标优化问题的关键.针对该问题,提出了求解高维多目标优化问题的子目标进化算法.从理论上证明了多目标优化问题Pareto非支配解的求取,可通过子目标函数值排序,先行选择进化种群中部分非支配解;然后,根据排序信息有选择性地比较进化种群中的元素,减少了比较次数,从而快速获得非支配解集.同时,提出归一化函数差值的Minkowski距离"k近邻"距离计算方法,在进化过程中应用到密度函数中,加速了收敛速度.同当前求解高维多目标优化的算法,在对标准测试函数的计算性能上进行比较,统计结果显示了所提算法在性能上的优势.
-
关键词:
- 高维多目标优化 /
- 子目标进化算法 /
- Pareto非支配解集 /
- Minkowski距离 /
- 遗传算法
Abstract: many-objective optimization is widely used in engineering area. There are some flaws to deal with many-objective optimization problem which the number of objectives exceeded three. The method which could chose proper individual solution is very crucial to solve high-dimension many-objective optimization problem. A sub-objective evolutionary algorithm (SOEA) was put forward to solve this problem. It was given in an abstract way to get the non-dominance solutions of high-dimension many-objective optimization problem. Firstly, the value of sub-objective function was sorted, and then partial Pareto non-dominance solutions of evolutional set were obtained quickly. By using the information of sorting, it could reduce the times of solution comparison in evolutional set and could get the solutions quickly. A uniform difference Minkowski distance algorithm and "k-neighbor" strategy were applied to compute fitness function. By using this method, it could improve the convergence speed to approach Pareto non-dominance solutions. Compared with the algorithms which can solve many-objective optimization problem for computing standard testing functions, it was showed the better performance of the SOEA algorithm. -
[1] 孔维健,丁进良,柴天佑.高维多目标进化算法研究综述[J].控制与决策,2010,25(3):321-326.Kong W J,Ding J L,Chai T Y.Survey on large-dimensional multi-objective evolutionary algorithms[J].Control and Decision,2010,25(3):321-326(in Chinese). [2] 公茂果,焦李成,杨咚咚,等.进化多目标优化算法研究[J].软件学报,2009,20(2):271-289.Gong M G,Jiao L C,Yang D D,et al.Evolutionary multi-objective optimization algorithm[J].Journal of Software,2009,20(2):271-289(in Chinese). [3] Deb K,Pratap A,Agarwal S,et al.A fast and elitist multiobjective genetic algorithm:NSGA-II[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-197. [4] Zitzler E,Laumanns M,Thiele L.SPEA2:Improving the strength Pareto evolutionary algorithm,TIK-Rep103[R].Lausanne:Swiss Federal Institute of Technology,2001. [5] Corne D W,Jerram N R,Knowles J D,et al.PESA-Ⅱ:Region-based selection in evolutionary multi-objective optimization[C]∥Proceeding of the Genetic and Evolutionary Computation Conference,GECCO 2001.San Francisco:Morgan Kaufmann Publishers,2001:283-290. [6] Khare V,Yao X,Deb K.Performance scaling of multi-objective evolutionary algorithms[C]∥Proceeding of the 2nd Conference on Evolutionary Multi-Criterion Optimization,EMO 2003.Berlin:Springer-Verlag,2003:376-390. [7] Bandyopadhyay S,Bhattacharya R.Solving multi-objective parallel machine scheduling problem by a modified NSGA-II[J].Applied Mathematical Modelling,2013,37(10-11):6718-6729. [8] Saxena D K,Deb K.Non-linear dimensionality reduction procedure for certain large-dimensional multi-objective optimization problems:Employing correntropy and a novel maximum variance unfolding[C]∥Proceedings of the 4th International Conference on Evolutionary Multi-Criterion Optimization.Berlin:Springer-Verlag,2007:772-787. [9] Hernández-Diaz A G,Santana-Quintero L V,Coello Coello C A,et al.Pareto-adaptiveε-dominance[J].Evolutionary Computation,2007,15(4):493-517. [10] 刘立佳,李相民,颜骥.解决高维多目标优化的分组进化算法[J].四川大学学报,2013,45(1):118-122.Liu L J,Li X M,Yan J.Group divided dimensional reduction evolutionary algorithm for multi-objective pptimization[J].Journal of Sichuan University,2013,45(1):118-122(in Chinese).〖JP〗 [11] Wagner T,Beume N,Naujoks B.Pareto-,aggregation-,and indicator-based methods in many-objective optimization[C]∥Lecture Notes in Computer Science.Berlin:Springr-Verlag,2007:742-756. [12] Hughes E J.Multiple single objective Pareto sampling[C]∥Congress on Evolutionary Computation (CEC03).Piscataway,NJ:IEEE Press,2003:2678-2684. [13] di Piero F.Many objectives evolutionary algorithms and applications to water resources engineering[D].Exeter:University of Exeter,2006. [14] 巩敦卫,季新芳,孙晓燕.基于集合的高维多目标优化问题的进化算法[J].电子学报,2014,42(1):77-83.Gong D W,Ji X F,Sun X Y.Solving many-objective optimization problems using set-based evolutionary algorithms[J].Acta Electronica Sinica,2014,42(1):77-83(in Chinese). [15] Brockhoff D,Zitziler E.Are all objectives necessary On dimensionality reduction in evolutionary multi objective optimization[C]∥Parallel Problem Solving from Nature.Berlin:Springer,2006:533-542. [16] Brockhoff D,Zitziler E.Objective reduction in evolutionary multi objective optimization:Theory and applications[J].Evolutionary Computation,2009,17(2):135-166. [17] Jaimes A L,Coello C A C,Chakraborty D,et a1.Objective reduction using a feature selection technique[C]∥Proceedings of the Genetic and Evolutionary Computation Conference(GECCO 08).Atlanta:ACM Press,2008:673-680. [18] Deb K,Thiele L,Laumanns M,et a1.Scalable multi objective optimization test problems[C]∥Congress on Evolutionary Computation(CEC02).Piscataway,NJ:IEEE Press,2002:825-830. [19] Knowles J,Corne D.On metrics for comparing non-dominated sets[C]∥Proceeding of the IEEE Congress on Evolutionary Computation.Piscataway,NJ:IEEE Press,2002:711-716. [20] 时宝,王兴平,盖明久.泛函分析引论及其应用[M].北京:国防工业出版社,2009:104-110.Shi B,Wang X P,Gai M J.Introduction to functional analysis with application[M].Beijing:National Defense Industry Press,2009:104-110(in Chinese).
点击查看大图
计量
- 文章访问数: 854
- HTML全文浏览量: 24
- PDF下载量: 610
- 被引次数: 0