Architecture of unified network based on programmable control gateway
-
摘要: 当前IP网络和非IP网络长期共存,协议体系和通信体制互不相同,异构网络的互联互通困难.针对这个问题, 首先从异构网络间连接的关键节点——网关出发,通过将网关底层的数据转发和控制功能分离,并将网关上层的管控功能和应用服务功能抽取出来,提出了一种基于可编程控制网关的一体化网络体系结构.该系统结构将网络分为一体化网络协同管控单元、子网间可编程控制网关节点和异构子网3层,设计了基于典型异构网络的互联协议栈,以集成不同的网络协议.进一步在一体化网络构架的基础上,给出并分析了异构网络的抽象与描述、基于可编程网关的异构子网智能适配技术、一体化网络的资源管理与协同优化理论等关键技术.最后基于民用航空通信给出了一个异构互联示例,表明一体化网络体系结构的可行性.Abstract: Due to the long-term coexistence of Internet Protocol (IP) and non-IP networks, there exist interconnection and interworking difficulties in heterogeneous networks for the difference of network architectures and protocols. Focusing on the gateway, the key node of heterogeneous networks interconnection, a unified network architecture based on programmable gateway is proposed to solve this problem, which separated the control plane from the data forwarding plane and extracted the combination of the management and control functionality and application service. The unified network architecture divides the network into three layers, which were unified network collaborative management and control unit, programmable gateway, and heterogeneous subnet. The interconnection protocol stack for the typical heterogeneous networks is designed to integrate different protocols. Then the key techniques and theory for the programmable gateway are given and analyzed based on the unified network architecture, including the abstraction and description of heterogeneous networks, intelligent adaptation technology based on programmable gateway, resource management and optimization of unified network, etc. Finally, a typical application case of interconnection networks in civil aviation is given as an illustration to demonstrate the proposed network architecture.
-
[1] 张军.面向未来的空天地一体化网络技术[J].国际航空,2008(9):36-39.Zhang J.Future space-ground interconnection network[J].International Aviation,2008(9):36-39(in Chinese). [2] Greenberg A,Hjalmtysson G,Maltz D A,et al.A clean slate 4D approach to network control and management[J].SIGCOMM Computer Communication Review,2005,35(5):41-54. [3] Global environment for network innovations (GENI) project[EB/OL].(2012-11-15)[2015-01-04].http:∥www.geni.net/. [4] NSF NeTS FIND initiative[EB/OL].(2012-09-18)[2015-01-04].http:∥www.nets-find.net. [5] AKARI architecture design project[EB/OL].(2012-12-08)[2015-01-04].http:∥akari-project.nict.go.jp/eng/index2.htm. [6] Greene K.Software-defined networking[J].MIT Technology Review,2009,38(8):66-69. [7] Chowdhury N M M K,Boutaba R.A survey of network virtualization[J].Computer Networks,2010,54(8):862-876. [8] Consultative committee for space data systems (CCSDS)[EB/OL].(2015-01-01)[2015-01-04].http:∥public.ccsds.org/default.aspx. [9] Tactical targeting network technology and connectivity[EB/OL].〖JP〗(2009-11-09)[2015-01-04].http:∥www.sldinfo.com/wp-content/uploads/2009/11/TTNTWhitePaper.pdf/. [10] NSF future internet architecture project[EB/OL].(2012-09-18)[2015-01-04].http:∥www.nets-fia.net/. [11] Bavier A,Feamster N,Huang M.In VINI veritas:Realistic and controlled network experimentation[C]∥ACM Annual Conference of the Special Interest Group on Data Communication.Pisa:ACM,2006:3-14. [12] 沈荣骏.我国天地一体化航天互联网构想[J].中国工程科学,2006(10):19-30.Shen R J.Some thoughts of chinese integrated space-ground network system[J].Engineering Science,2006(10):19-30(in Chinese). [13] Liu Z J,Li Y,Cui B,et al.Grain flow:Enable testing for future internet architectures by per-bit customization[J].Computer Networks,2014,69:121-132. [14] Shanmugalingam S.Programmable mobile core network[C]∥Proceedings of IEEE Symposium on Computers and Communication.Piscataway,NJ:IEEE Press,2014:1-7. [15] Anwere M B,Feamster N.Building a fast virtualized data plane with programmable hardware[C]∥VISA'09 Proceedings of the 1st ACM Workshop on Virtualized Infrastructure Systems and Architectures.New York:ACM,2009:1-8.
点击查看大图
计量
- 文章访问数: 820
- HTML全文浏览量: 45
- PDF下载量: 531
- 被引次数: 0