留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于碰撞航线的动能拦截器滑模制导律设计

杨旭 张皎 刘源翔

杨旭, 张皎, 刘源翔等 . 基于碰撞航线的动能拦截器滑模制导律设计[J]. 北京航空航天大学学报, 2015, 41(11): 2095-2102. doi: 10.13700/j.bh.1001-5965.2014.0728
引用本文: 杨旭, 张皎, 刘源翔等 . 基于碰撞航线的动能拦截器滑模制导律设计[J]. 北京航空航天大学学报, 2015, 41(11): 2095-2102. doi: 10.13700/j.bh.1001-5965.2014.0728
YANG Xu, ZHANG Jiao, LIU Yuanxianget al. Sliding mode guidance law for KKV based on collision course[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(11): 2095-2102. doi: 10.13700/j.bh.1001-5965.2014.0728(in Chinese)
Citation: YANG Xu, ZHANG Jiao, LIU Yuanxianget al. Sliding mode guidance law for KKV based on collision course[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(11): 2095-2102. doi: 10.13700/j.bh.1001-5965.2014.0728(in Chinese)

基于碰撞航线的动能拦截器滑模制导律设计

doi: 10.13700/j.bh.1001-5965.2014.0728
基金项目: 国家"863"计划(2011AA7043024);"985工程"三期重点建设项目
详细信息
    通讯作者:

    杨旭(1986-),男,黑龙江安达人,博士研究生,yangxu@bit.edu.cn,主要研究方向为飞行器动力学与控制.

  • 中图分类号: V488.13

Sliding mode guidance law for KKV based on collision course

  • 摘要: 针对大气层外用于拦截目标动能拦截器(KKV)的制导律设计问题,采用非线性干扰观测器(NDO)及滑模变结构控制思想设计了一种基于碰撞航线的制导律.通过控制导弹攻角,使导弹的速度方向始终指向预期碰撞点,并利用NDO对目标加速度进行有效估计及动态补偿,降低了导弹所需的过载,并提高了命中时的速度.同时,分别从拦截轨迹、可拦截目标区域及拦截目标速度范围对机动目标进行拦截仿真,并与以零化视线角速率为目标设计的有限时间收敛制导律对比,仿真结果表明对于动能拦截器采用基于碰撞航线的滑模制导律具有更好的制导性能.

     

  • [1] 朱战霞,韩沛,陈鹏.基于非线性Terminal滑模的动能拦截器末制导律设计[J].西北工业大学学报, 2013, 31(2):233-238. Zhu Z X, Han P, Chen P.Design of nonlinear Terminal SMGL(sliding-mode guidance law) for KKV(kinetic kill vehicle)[J].Journal of Northwestern Polytechnical University, 2013, 31(2):233-238(in Chinese).
    [2] Yuan L C.Homing and navigational courses of automatic target-seeking devices[J].Journal of Applied Physics, 1948, 19(12):1122.
    [3] Garnell P.Guided weapon control systems[M].Oxford:Pergamon Press, 1980:238-240.
    [4] 谷志军,陈磊.大气层外动能拦截器顺轨拦截技术研究[J].宇航学报, 2007, 28(5):1195-1198. Gu Z J, Chen L.Research on interception along track for exoatmospheric[J].Journal of Astronautics, 2007, 28(5):1195-1198(in Chinese).
    [5] 张友安,黄诘,孙阳平.带有落角约束的一般加权最优制导律[J].航空学报, 2014, 35(3):848-856. Zhang Y A, Huang J, Sun Y P.Generalized weighted optimal guidance laws with impact angle constraint[J].Acta Aeronautica et Astronautica Sinica, 2014, 35(3):848-856(in Chinese).
    [6] 李浩,佘浩平.基于理想视线的弹道成型最优导引律[J].兵工学报, 2014, 35(8):1200-1204. Li H, She H P.Trajectory shaping guidance law based on ideal line-of-sight[J].Acta Armamentarii, 2014, 35(8):1200-1204(in Chinese).
    [7] Indig N, Ben-Asher J Z, Farber N.Near-optimal spatial midcourse guidance law with an angular constraint[J].Journal of Guidance, Control, and Dynamics, 2014, 37(1):214-223.
    [8] 张运喜,孙明玮,陈增强.滑模变结构有限时间收敛制导律[J].控制理论与应用, 2012, 29(11):1413-1418. Zhang Y X, Sun M W, Chen Z Q.Sliding-mode variable structure finite-time convergence guidance law[J].Control Theory & Applications, 2012, 29(11):1413-1418(in Chinese).
    [9] Zhou D, Sun S, Teo K L.Guidance laws with finite time convergence[J].Journal of Guidance, Control, and Dynamics, 2009, 32(6):1838-1846.
    [10] Rao S, Ghose D.Terminal impact angle constrained guidance laws using variable structure systems theory[J].IEEE Transactions on Control Systems Technology, 2013, 21(6):2350-2359.
    [11] Ran M P, Wang Q, Hou D L, et al.Backstepping design of missile guidance and control based on adaptive fuzzy sliding mode control[J].Chinese Journal of Aeronautics, 2014, 27(3):634-642.
    [12] 舒燕军,唐硕.轨控式复合控制导弹制导与控制一体化反步设计[J].宇航学报, 2013, 34(1):79-85. Shu Y Y, Tang S.Integrated guidance and control backstepping design for blended control missile based on NDO[J].Journal of Astronautics, 2013, 34(1):79-85(in Chinese).
    [13] 刁兆师,单家元.考虑自动驾驶仪动态特性的含攻击角约束的反演递推制导律[J].宇航学报, 2014, 35(7):818-826. Diao Z S, Shan J Y.Back-stepping guidance law with autopilot lag for attack angle constrained trajectories[J].Journal of Astronautics, 2014, 35(7):818-826(in Chinese).
    [14] Qu P P, Zhou D.A dimension reduction observer-based guidance law accounting for dynamics of missile autopilot[J].Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2013, 227(7):1114-1121.
    [15] Zhou D, Qu P P, Sun S.A guidance law with terminal impact angle constraint accounting for missile autopilot[J].Journal of Dynamic Systems, Measurement, and Control, 2013, 135(5):51009.
    [16] Zarchan P.Representation of realistic evasive maneuvers by use of shaping filters[J].Journal of Guidance, Control, and Dynamics, 1979, 10(4):434-439.
    [17] Shima T, Oshman Y, Shinar J.Efficient multiple model adaptive estimation in ballistic missile interception scenarios[J].Journal of Guidance, Control, and Dynamics, 2002, 25(4):667-675.
    [18] Zhu Z, Xu D, Liu J, et al.Missile guidance law based on extended state observer[J].IEEE Transactions on Industrial Electronics, 2013, 60(12):5882-5891.
    [19] Zhang Z, Li S, Luo S.Terminal guidance laws of missile based on ISMC and NDOB with impact angle constraint[J].Aerospace Science and Technology, 2013, 31(1):30-41.
    [20] Ratnoo A, Ghose D.Collision-geometry-based pulsed guidance law for exoatmospheric interception[J].Journal of Guidance, Control, and Dynamics, 2009, 32(2):669-675.
    [21] Bhat S P, Bernstein D S.Finite-time stability of continuous autonomous systems[J].SIAM Journal on Control and Optimization, 2000, 38(3):751-766.
    [22] Shtessel Y B, Shkolnikov I A, Levant A.Smooth second-order sliding modes:Missile guidance application[J].Automatica, 2007, 43(8):1470-1476.
    [23] Levant A.Higher-order sliding modes, differentiation and output-feedback control[J].International Journal of Control, 2003, 76(9-10):924-941.
    [24] Hong Y.Finite-time stabilization and stabilizability of a class of controllable systems[J].Systems & Control Letters, 2002, 46(4):231-236.
  • 加载中
计量
  • 文章访问数:  990
  • HTML全文浏览量:  184
  • PDF下载量:  882
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-20
  • 修回日期:  2015-01-06
  • 网络出版日期:  2015-11-20

目录

    /

    返回文章
    返回
    常见问答