Sliding mode guidance law for KKV based on collision course
-
摘要: 针对大气层外用于拦截目标动能拦截器(KKV)的制导律设计问题,采用非线性干扰观测器(NDO)及滑模变结构控制思想设计了一种基于碰撞航线的制导律.通过控制导弹攻角,使导弹的速度方向始终指向预期碰撞点,并利用NDO对目标加速度进行有效估计及动态补偿,降低了导弹所需的过载,并提高了命中时的速度.同时,分别从拦截轨迹、可拦截目标区域及拦截目标速度范围对机动目标进行拦截仿真,并与以零化视线角速率为目标设计的有限时间收敛制导律对比,仿真结果表明对于动能拦截器采用基于碰撞航线的滑模制导律具有更好的制导性能.Abstract: Aimed at the problem of exoatmospheric kinetic kill vehicle(KKV) guidance law design for intercepting targets, a novel missile sliding mode guidance law with nonlinear disturbance observer (NDO) was derived base on collision course. Through steering angle of attack of missile, the direction of velocity of missile always pointed at the expected collision point. Missile could intercept the target with lower overload, faster speed via NDO, which was currently estimating and dynamically compensating to target acceleration. Moreover, comparison to the two interception strategies were obtained with interception trajectories, capture zones and velocity range. Another strategy was the sliding mode guidance law based on finite time convergence which aiming to steering the line of sight rate close to zero. The results show that the validities of the proposed sliding mode guidance law based on collision course in application for kinetic kill vehicle.
-
[1] 朱战霞,韩沛,陈鹏.基于非线性Terminal滑模的动能拦截器末制导律设计[J].西北工业大学学报, 2013, 31(2):233-238. Zhu Z X, Han P, Chen P.Design of nonlinear Terminal SMGL(sliding-mode guidance law) for KKV(kinetic kill vehicle)[J].Journal of Northwestern Polytechnical University, 2013, 31(2):233-238(in Chinese). [2] Yuan L C.Homing and navigational courses of automatic target-seeking devices[J].Journal of Applied Physics, 1948, 19(12):1122. [3] Garnell P.Guided weapon control systems[M].Oxford:Pergamon Press, 1980:238-240. [4] 谷志军,陈磊.大气层外动能拦截器顺轨拦截技术研究[J].宇航学报, 2007, 28(5):1195-1198. Gu Z J, Chen L.Research on interception along track for exoatmospheric[J].Journal of Astronautics, 2007, 28(5):1195-1198(in Chinese). [5] 张友安,黄诘,孙阳平.带有落角约束的一般加权最优制导律[J].航空学报, 2014, 35(3):848-856. Zhang Y A, Huang J, Sun Y P.Generalized weighted optimal guidance laws with impact angle constraint[J].Acta Aeronautica et Astronautica Sinica, 2014, 35(3):848-856(in Chinese). [6] 李浩,佘浩平.基于理想视线的弹道成型最优导引律[J].兵工学报, 2014, 35(8):1200-1204. Li H, She H P.Trajectory shaping guidance law based on ideal line-of-sight[J].Acta Armamentarii, 2014, 35(8):1200-1204(in Chinese). [7] Indig N, Ben-Asher J Z, Farber N.Near-optimal spatial midcourse guidance law with an angular constraint[J].Journal of Guidance, Control, and Dynamics, 2014, 37(1):214-223. [8] 张运喜,孙明玮,陈增强.滑模变结构有限时间收敛制导律[J].控制理论与应用, 2012, 29(11):1413-1418. Zhang Y X, Sun M W, Chen Z Q.Sliding-mode variable structure finite-time convergence guidance law[J].Control Theory & Applications, 2012, 29(11):1413-1418(in Chinese). [9] Zhou D, Sun S, Teo K L.Guidance laws with finite time convergence[J].Journal of Guidance, Control, and Dynamics, 2009, 32(6):1838-1846. [10] Rao S, Ghose D.Terminal impact angle constrained guidance laws using variable structure systems theory[J].IEEE Transactions on Control Systems Technology, 2013, 21(6):2350-2359. [11] Ran M P, Wang Q, Hou D L, et al.Backstepping design of missile guidance and control based on adaptive fuzzy sliding mode control[J].Chinese Journal of Aeronautics, 2014, 27(3):634-642. [12] 舒燕军,唐硕.轨控式复合控制导弹制导与控制一体化反步设计[J].宇航学报, 2013, 34(1):79-85. Shu Y Y, Tang S.Integrated guidance and control backstepping design for blended control missile based on NDO[J].Journal of Astronautics, 2013, 34(1):79-85(in Chinese). [13] 刁兆师,单家元.考虑自动驾驶仪动态特性的含攻击角约束的反演递推制导律[J].宇航学报, 2014, 35(7):818-826. Diao Z S, Shan J Y.Back-stepping guidance law with autopilot lag for attack angle constrained trajectories[J].Journal of Astronautics, 2014, 35(7):818-826(in Chinese). [14] Qu P P, Zhou D.A dimension reduction observer-based guidance law accounting for dynamics of missile autopilot[J].Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2013, 227(7):1114-1121. [15] Zhou D, Qu P P, Sun S.A guidance law with terminal impact angle constraint accounting for missile autopilot[J].Journal of Dynamic Systems, Measurement, and Control, 2013, 135(5):51009. [16] Zarchan P.Representation of realistic evasive maneuvers by use of shaping filters[J].Journal of Guidance, Control, and Dynamics, 1979, 10(4):434-439. [17] Shima T, Oshman Y, Shinar J.Efficient multiple model adaptive estimation in ballistic missile interception scenarios[J].Journal of Guidance, Control, and Dynamics, 2002, 25(4):667-675. [18] Zhu Z, Xu D, Liu J, et al.Missile guidance law based on extended state observer[J].IEEE Transactions on Industrial Electronics, 2013, 60(12):5882-5891. [19] Zhang Z, Li S, Luo S.Terminal guidance laws of missile based on ISMC and NDOB with impact angle constraint[J].Aerospace Science and Technology, 2013, 31(1):30-41. [20] Ratnoo A, Ghose D.Collision-geometry-based pulsed guidance law for exoatmospheric interception[J].Journal of Guidance, Control, and Dynamics, 2009, 32(2):669-675. [21] Bhat S P, Bernstein D S.Finite-time stability of continuous autonomous systems[J].SIAM Journal on Control and Optimization, 2000, 38(3):751-766. [22] Shtessel Y B, Shkolnikov I A, Levant A.Smooth second-order sliding modes:Missile guidance application[J].Automatica, 2007, 43(8):1470-1476. [23] Levant A.Higher-order sliding modes, differentiation and output-feedback control[J].International Journal of Control, 2003, 76(9-10):924-941. [24] Hong Y.Finite-time stabilization and stabilizability of a class of controllable systems[J].Systems & Control Letters, 2002, 46(4):231-236.
点击查看大图
计量
- 文章访问数: 990
- HTML全文浏览量: 184
- PDF下载量: 882
- 被引次数: 0