Two dimensional dynamics of continuous cislunar payload transfer system considering structural deviation effect
-
摘要: 以驱动型动量交换绳系卫星系统(MMET)为载体,采用动量交换原理,考虑母星两端系绳长度偏差、两载荷质量偏差等结构偏差的前提下,应用拉格朗日(Lagrange)方法建立了连续地月载荷转移系统(CCPTS)的二维误差动力学模型.在不同的系绳长度偏差以及载荷质量偏差前提下,对所建立的误差动力学模型进行了数值仿真分析.仿真结果表明,系绳长度偏差以及载荷质量偏差对CCPTS的广义坐标、广义速度等动力学参数均产生了相似的影响,随着系绳长度偏差的增加(或载荷质量偏差的增加),CCPTS的广义坐标、广义速度偏差量的最大值均呈现相同的线性增加趋势,而对于广义加速度而言,则没有明显的线性关系.外力矩的存在能够在一定程度上削减因结构偏差所造成的对CCPTS动力学参数的影响程度.Abstract: Based on the motorized momentum exchange tether (MMET), with the principle of momentum exchange and by considering the structural deviation (including the tether length deviation and payload mass deviation), the two dimensional error dynamics of continuous cislunar payloads transferring system (CCPTS) was built by Lagrange method and its numerical simulated solution was solved by Mathematica software. Under the conditions of existing the tether length deviation and payload mass deviation, the dynamic simulations of the CCPTS were presented. It is shown that tether length deviation and payload mass deviation have similar influence on CCPTS's dynamics (including generalized coordinates and generalized velocity). With the increment of tether length deviation or payload mass deviation, the maximum of the CCPTS's generalized coordinates' deviation and generalized velocities' deviation increases linearly. However, the maximum of the CCPTS's generalized accelerations have no evident linear relation with the structure deviation of the CCPTS. Lastly, the external torque can weaken the influence degree of the structure deviation of the CCPTS on the dynamic parameters.
-
Key words:
- tether satellite /
- momentum exchange /
- cislunar transfer /
- payload /
- dynamics /
- structural deviation
-
[1] Carrou J A.Guidebook for analysis of tether applications, NASA-CR-178903[R].Washington D.C.:NASA, 1985. [2] Chen Y, Huang R, He L P, et al.Dynamical modelling and control of space tethers:A review of space tether research[J].Nonlinear Dynamics, 2014, 77(4):1077-1099. [3] George A K.Advantages of tether release of satellites from elliptic orbits[J].Journal of Guidance, Control, and Dynamics, 1988, 11(5):441-448. [4] Zhong L, Peter M B.Momentum exchange:Feedback control of flexible spacecraft maneuvers and vibration[J].Journal of Guidance, Control, and Dynamics, 1992, 15(6):1354-1361. [5] Puig-Suari J, Longuski J M, Tragesser S G.A tether sling for lunar and interplanetary exploration[J].Acta Astronautica, 1995, 36(6):291-295. [6] Chernousko F L.Dynamics of retrieval of a space tethered system[J].Journal of Application Mathematics and Mechanics, 1995, 59(2):165-173. [7] Maximilian M S, Ryan P R.Jovian orbit capture and eccentricity reduction using electrodynamic tether propulsion[J].Journal of Spacecraft and Rockets, 2015, 52(2):506-516. [8] Robert P H, Chauncey U.Cislunar tether transport system[J].Journal of Spacecraft and Rockets, 2000, 37(2):177-186. [9] Cartmell M P.Generating velocity increments by means of a spinning motorised tether[J].AIAA Journal, 1998, 21(2):155-158. [10] Cartmell M P, McKenzie D J.A review of space tether research[J].Progress in Aerospace Science, 2007, 44(1):1-22. [11] Ziegler S W.The rigid body dynamic of tethers in space[D].Glasgow:University of Glasgow, 2003. [12] Ziegler S W, Cartmell M P.Using motorized tethers for payload orbital transfer[J].Journal of Spacecraft and Rockets, 2001, 38(6):904-913. [13] Chen Y.Dynamical modelling of a flexible motorised momentum exchange tether and hybrid fuzzy sliding mode control for spin-up[D].Glasgow:University of Glasgow, 2010. [14] Chen Y, Cartmell M P.Hybrid fuzzy sliding mode control for motorised space tether spin-up when coupled with axial and torsional oscillation[J].Astrophys Space Science, 2010, 326(1):105-118. [15] Ismail N A.The dynamics of a flexible motorised momentum exchange tether (MMET)[D].Glasgow:University of Glasgow, 2012.
点击查看大图
计量
- 文章访问数: 814
- HTML全文浏览量: 57
- PDF下载量: 476
- 被引次数: 0