Effect of Zr content on properties of Ti-Zr-Cu-Ni filler metal and its brazed joint
-
摘要: 采用电弧熔炼方法制备Ti-5Zr-15Cu-15Ni、Ti-10Zr-15Cu-15Ni、Ti-15Zr-15Cu-15Ni和Ti-25Zr-15Cu-15Ni 4种钛基钎料,采用4种钎料对Ti-6Al-4V板材进行搭接接头真空钎焊.对不同Zr含量的钎料的熔化特性和在Ti-6Al-4V上的润湿性进行测试,并对钎焊接头的微观组织、显微硬度和剪切强度进行测试.结果表明,Zr元素的加入对Ti-Zr-Cu-Ni钛基钎料的熔化温度有显著影响,当Zr含量为5wt%、25wt%时,钎料的固液相线温差较大,且液相线温度较高;当Zr含量为10wt%、15wt%时,钎料的固液相线温差较小,且液相线温度较低.与其他钎料成分不同,25wt% Zr含量的钎料在钎料熔化过程中存在2个明显的低熔点共晶反应,其钎料在铺展过程中出现分层现象.15wt%和25wt% Zr含量钎焊接头具有更低的显微硬度.综合钎料的熔化特性以及钎焊接头的显微硬度和剪切强度,Ti-15Zr-15Cu-15Ni是最佳的钎料成分配比,具有最好的综合性能,其钎焊接头的剪切强度为298 MPa.
-
关键词:
- 钛基钎料 /
- 润湿性 /
- 差动扫描量热法(DSC) /
- 微观组织 /
- 剪切强度
Abstract: Four kinds of titanium-based filler metals, Ti-5Zr-15Cu-15Ni, Ti-10Zr-15Cu-15Ni, Ti-15Zr-15Cu-15Ni and Ti-25Zr-15Cu-15Ni, were fabricated by electric arc melting method, and the four kinds of filler metals were used for vacuum brazing of Ti-6Al-4V plate lap joints. The melting characteristic and wettability of the filler metals on Ti-6Al-4V were tested, and the microstructures, microhardnesses and shear strengths of the brazed joints with different filler metals were tested and analyzed. The results show that the addition of Zr has an obvious effect on the melting temperature of Ti-Zr-Cu-Ni filler metal. The gap between solidus and liquidus temperatures is wide with much higher liqiudus temperature when the content of Zr is 5wt% or 25wt%. In contrast, the gap between solidus and liquidus temperatures is narrow with lower liquidus temperature when the content of Zr is 10wt% or 15wt%. Different from other compositions of filler metals, when the content of Zr is 25wt%, there are two obvious low temperature eutectic reactions during melting process, and the filler metal appears two spreading layers phenomenon during the wetting process. And much lower microhardness was attained in the brazed joint when the content of Zr is 15wt% or 25wt%. Considering the melting characteristic of the filler metals and the microhardness and shear strength of the brazed joints, the optimized composition of the filler metal is Ti-15Zr-15Cu-15Ni, and the shear strength of the brazed joint with this filler metal is 298 MPa. -
[1] Gurrappa I.Characterization of titanium alloy Ti-6Al-4V for chemical, marine and industrial applications[J].Materials Characterization, 2003, 51(2-3):131-139. [2] Boyer R R.An overview on the use of titanium in the aerospace industry[J].Materials Science and Engineering A, 1996, 213(1-2):103-114. [3] Yamada M.An overview on the development of titanium alloys for non-aerospace application in Japan[J].Materials Science and Engineering A, 1996, 213(1-2):8-15. [4] 吴昌忠,陈静,陈怀宁,等.钛合金高温钎焊接头的组织性能及影响因素评价[J].宇航材料工艺, 2005(3):17-20. Wu C Z, Chen J, Chen H N, et al.Review of microstructures and properties of high-temperature brazed titanium joints and influential factors[J].Aerospace Materials & Technology, 2005(3):17-20(in Chinese). [5] 蒋成禹,吴铭方,于治水,等.Ti基钎料真空钎焊Ti-6Al-4v[J].工艺与新技术, 2002, 31(1):19-20. Jiang C Y, Wu M F, Yu Z S, et al.Vacuum brazing of Ti-6Al-4v with titanium-based filler metal[J].Welding Technology, 2002, 31(1):19-20(in Chinese). [6] 王鑫,祁焱,张羊换,等.钛合金用钛基焊料的现状及发展[J].金属功能材料, 2005, 12(6):41-44. Wang X, Qi Y, Zhang Y H, et al.Development and condition of Ti-based brazing material for titanium alloys[J].Metallic Functional Materials, 2005, 12(6):41-44(in Chinese). [7] 孙晓亮,马光,李银娥,等.钛基非晶态钎焊料发展评述[J].钛工业进展, 2008, 25(6):11-14. Sun X L, Ma G, Li Y E, et al.Review on development of Ti-based amorphous brazing materials[J].Titanium Industry Progress, 2008, 25(6):11-14(in Chinese). [8] Chang C T, Du Y C, Shiueb R K, et al.Infrared brazing of high-strength titanium alloys by Ti-15Cu-15Ni and Ti-15Cu-25Ni filler foils[J].Materials Science and Engineering A, 2006, 420(1-2):155-164. [9] Chang C T, Shiue R K, Chang C S.Microstructural evolution of infrared brazed Ti-15-3 alloy using Ti-15Cu-15Ni and Ti-15Cu-25Ni fillers[J].Scripta Materialia, 2006, 54(5):853-858. [10] Qin Y Q, Feng J C.Active brazing carbon/carbon composite to TC4 with Cu and Mo composite interlayers[J].Materials Science and Engineering A, 2009, 525(1-2):181-185. [11] Olson D L, Siewert T A, Liu S, et al.ASM handbook Vol.6, welding, brazing and soldering[M].Ohio Materials Park:ASM International, 1993:55-58. [12] Yang T Y, Shiue R K, Wu S K.Infrared brazing of Ti50Ni50 shape memory alloy using pure Cu and Ti-15Cu-15Ni foils[J].Intermetallics, 2004, 12(12):1285-1292. [13] Dai C L, Deng J W, Zhang Z X, et al.Cu-Zr-Ti ternary bulk metallic glasses correlated with (L→Cu8Zr3+Cu10Zr7) univariant eutectic reaction[J].Journal of Materials Research, 2008, 23(5):1249-1257. [14] Dai C L, Guo H, Li Y, et al.A new composition zone of bulk metallic glass formation in the Cu-Zr-Ti ternary system and its correlation with the eutectic reaction[J].Journal of Non-Crystalline Solids, 2008, 354(31):3659-3665. [15] Men H, Pang S J, Inoue A, et al.New Ti-based bulk metallic glasses with significant plasticity[J].Materials Transactions, 2005, 46(10):2218-2220. [16] Lee D M, Sun J H, Kang D H, et al.A deep eutectic point in quaternary ZrTiNiCu system and bulk metallic glass formation near the eutectic point[J].Intermetallics, 2012, 21(1):67-74. [17] Massalski T B.Binary alloy phase diagrams[M].2nd ed.Ohio Materials Park:ASM International, 1990:102-106. [18] Chang C T, Wu Z Y, Shiue R K, et al.Infrared brazing Ti-6Al-4V and SP-700 alloys using the Ti-20Zr-20Cu-20Ni braze alloy[J].Materials Letters, 2007, 61(3):842-845.
点击查看大图
计量
- 文章访问数: 1007
- HTML全文浏览量: 91
- PDF下载量: 520
- 被引次数: 0