Breakup characteristics of liquid jet in supersonic cross flow
-
摘要: 为了研究超燃冲压发动机燃烧室内液体燃料雾化掺混特性,确定影响雾化的关键因素以实现高效燃烧,在超燃冷态雾化实验平台,以纹影法为主,同时辅助以平面激光诱导荧光(PLIF)技术和基于向前散射原理的颗粒直径测量技术,分别对横向射流航空煤油RP-3和水在超声速气流中的流场波系结构、射流穿透深度和诱导弓形激波强度等进行了实验研究,并对射流雾化掺混特性进行了数理分析.结果表明:定义的无量纲参数能够定性分析两种液体横向射流在超音速流场中的变化规律,并得到与实验结果一致的结论;在动压比1.0~3.3范围内,射流穿透深度和诱导弓形激波强度随着动压比和射流速度的增加而增加;表面张力和黏度对超声速射流掺混有重要影响.
-
关键词:
- 超燃冲压发动机 /
- 横向射流 /
- 纹影法 /
- 平面激光诱导荧光(PLIF) /
- 雾化
Abstract: In order to study the atomization mixing characteristics of liquid fuel in scramjet combustor as well as determine the key factors influencing the atomization so as to realize efficient combustion, the flow field structure of the shock wave, jet penetration and induced bow shock strength of liquid jet aviation kerosene RP-3 and water in supersonic flow were experimentally studied respectively by mainly using the schlieren method,assisted with planar laser induced fluorescence (PLIF) technology and particle diameter measurement technology in supersonic combustion cold spray experiment platform. And jet atomization mixing characteristics were mathematically analyzed. It is demonstrated that defined dimensionless parameters could qualitative analyze variation trend associated with both two kinds of liquid jet in supersonic cross flow, and the conclusion is consistent with the experimental result. Within the scope of the dynamic pressure ratio of 1.0-3.3, the jet penetration and induced bow shock strength increases with the increase of dynamic pressure ratio and jet velocity. Surface tension and viscosity have important effects on the supersonic jet mixing.-
Key words:
- scramjet /
- traverse jet /
- schlieren method /
- planar laser induced fluorescence (PLIF) /
- atomization
-
[1] Bogdanoff D W.Advanced injection and mixing techniques for scramjet combustors[J].Journal of Propulsion and Power,1994,10(2):183-190. [2] 吴先宇,陈晖,刘睿,等.碳氢燃料超燃冲压发动机燃烧室控制试验[J].航空动力学报,2008,23(8):1541-1545. Wu X Y,Chen H,Liu R,et al.Experimental on control of liquid hydrocarbon fueled scramjet combustor[J].Journal of Aerospace Power,2008,23(8):1541-1545(in Chinese). [3] Fiorina B,Lele S.Numerical investigation of a transverse jet in a supersonic crossflow using large eddy simulation,AIAA-2006-3712[R].Reston:AIAA,2006. [4] Vinogradov V A,Kobigskij S A,Petrov M D.Experimental investigation of kerosene fuel combustion in supersonic flow[J].Journal of Propulsion and Power,1995,11(1):130-134. [5] Maniaci D.Relative performance of a liquid hydrogen-fueled commercial transport,AIAA-2008-152[R].Reston:AIAA,2008. [6] Yuan Y,Yang M,Zhang T,et al.Visualization of vaporized kerosene combustion in a supersonic combustor using pulsed schlieren system,AIAA-2012-3848[R].Reston:AIAA,2012. [7] Yang H,Li F,Sun B G.Trajectory analysis of fuel injection into supersonic cross flow based on schlieren method[J].Chinese Journal of Aeronautics,2012,25(1):42-50. [8] Donohue J M,McDaniel Jr J C,Hai-Hariri H.Experimental and numerical study of swept ramp injection into a supersonic flowfield[J].AIAA Journal,1994,32(9):1860-1867. [9] 费立森.煤油在冷态超声速气流中喷射和雾化现象的初步研究[D].合肥:中国科学技术大学,2007. Fei L S.Pilot study on the injectin and atomization of kerosene in cold supersonic flow[D].Hefei:University of Science and Technology of China,2007(in Chinese). [10] Yang H,Li F,Sun B G,et al.Schlieren and PLIF measurements of liquid fuel injection in Mach 2 supersonic crossflow[J].Advanced Materials Research,2012,571:701-705. [11] Schetz J A,Situ M,Hewitt P W.Transverse jet breakup and atomization with rapid vaporization alongthe trajectory[J].AIAA Journal,1985,23(4):596-603. [12] Aso S,Kawai M,Ando Y.Experimental study on mixing phenomena in supersonic flows with slot injection,AIAA-1991-0016[R].Reston:AIAA,1991. [13] 黄勇.燃烧与燃烧室[M].北京:北京航空航天大学出版社,2009:202-230. Huang Y.Combustion and combustor[M].Beijing:Beihang University Press,2009:202-230(in Chinese). [14] Wayne M V,Juan G S,Robert P L,et al.Mixing of a sonic transverse jet injected into a supersonic flow[J].AIAA Journal,2000,38(3):470-479.
点击查看大图
计量
- 文章访问数: 1110
- HTML全文浏览量: 218
- PDF下载量: 476
- 被引次数: 0