Control method for aircraft wake vortex based on Rayleigh-Ludwig instability
-
摘要: 在飞机飞行的过程中尾涡会伴随着升力产生,威胁后机的飞行安全.在简化机翼模型上添加扰流片,通过一个矩形翼以引入一个与主翼尾涡大小不同、方向相反的小涡,构建尾流自消散四涡系统,以期诱发尾涡的Rayleigh-Ludwig相交不稳定性.通过改变扰流片的大小形状,调整模型的攻角和拖曳速度,采用粒子图像速度场仪测量系统定量研究在低雷诺数下单主翼尾涡发展特性以及双涡相互作用特性.研究表明:在未添加扰流片时,尾涡环量在45个翼展内相对于初始环量基本保持不变;在添加扰流片的情况下尾涡的环量衰减可以达到35%~55%,而未添加的基本翼型的尾涡的环量则几乎保持不变,这说明添加适当的扰流片能诱发尾涡的Rayleigh-Ludwig相交不稳定性,加速尾涡的消散,当小涡和主涡的初始环量比为-0.489、初始距离比为0.5时,45个翼展范围内,尾涡环量衰减55.9%.本文系统性的实验结果可以为低尾流机翼的设计提供参考依据.
-
关键词:
- 飞机尾流 /
- Rayleigh-Ludwig不稳定性 /
- 粒子图像测速(PIV) /
- 扰流片 /
- 低雷诺数
Abstract: The aircraft wake vortex is an inherent flow phenomenon due to the lift generation mechanism, which has a negative impact on the flight safety. By adding a set of specially designed spoiler, a rectangular wing was designed to generate a pair of weaker vortices, which had different sizes and opposite direction compared to main wing vortices, thereby constructing a self-destructive four-vortex wake system to induce Rayleigh-Ludwig instability. Under different experimental conditions, in terms of changing the size or shape of the spoiler, towing speed and angle of attack, the wake vortex development of the test model, that both with and without spoiler, as well as the circulation analysis, were acquired particle image velocimetry (PIV) measurements under the low Reynolds number. The study demonstrates that the decrease in circulation was 35% to 55% in 45 wingspans when spoilers are introduced, whereas the counterpart of the baseline airfoil, without spoilers, is nearly kept steadily, which reveal the application possibility of Rayleigh-Ludwig instability in alleviating the wake vortex. As the initial circulation ratio equals to -0.489 and the initial distance ratio is 0.5, the circulation of the primary vortex reduce most significantly (55.9%) in 45 wingspans. Results would provide a scheme in the design of airfoils with weaker vortices. -
[1] Burnham D C, Hallock J N.Decay characteristics of wake vortices from jet transport aircraft[J].Journal of Aircraft,2012,50(1):82-87. [2] Dacles-Mariani J, Hafez M,Kwak D.Prediction of wake-vortex flow inthenear-and intermediate-fields behind wings,AIAA-1997-0040[R].Reston:AIAA,1997. [3] Veillette P R. Data show that U.S.wake-turbulence accidents are most frequent at low altitude and during approach and landing[J].Flight Safety Digest,2002,21(3-4):1-47. [4] Holzäpfel F. Sensitivity analysis of the effects of aircraft and environmental parameters on aircraft eake vortex trajectories and lifetimes,AIAA-2013-0363[R].Reston:AIAA,2013. [5] Borer N K, Barrows T M,Levine D M,et al.Formation airdrop scaling effects on aircraft wake vortex formation and interaction,AIAA-2013-0361[R],Reston:AIAA,2013. [6] Burnham D C, Hallock J N.Decay characteristics of wake vortices from jet transport aircraft[J].Journal of Aircraft,2012,50(1):82-87. [7] Stewart E C. A study of the interaction between a wake vortex and an encountering airplane,AIAA-1993-3642[R].Reston:AIAA,1993. [8] Perry R B, Hinton D A,Stuever R A.NASA wake vortex research for aircraft spacing,AIAA-1997-0057[R].Reston:AIAA,1997. [9] Zheng Z C, Xu Y,Wilson D K.Behaviors of vortex wake in random atmospheric turbulence[J].Journal of Aircraft,2009,46(6):2139-2144. [10] Harris M, Young R I,K pp F,et al.Wake vortex detection and monitoring[J].Aerospace Science and Technology,2002,6(5):325-331. [11] Holzäpfel F, Frech M,Gerz T,et al.Aircraft wake vortex scenarios simulation package-WakeScene[J].Aerospace Science and Technology,2009,13(1):1-11. [12] Kauertz S, Holzäpfel F,Kladetzke J.Wake vortex encounter risk assessment for crosswind departures[J].Journal of Aircraft,2012,49(1):281-291. [13] Stephan A, Holzäpfel F,Misaka T.Aircraft wake-vortex decay in ground proximity-physical mechanisms and artificial enhancement[J].Journal of Aircraft,2013,50(4):1250-1260. [14] Rennich S C, Lele S K.Method for accelerating the destruction of aircraft wake vortices[J].Journal of Aircraft,1999,36(2):398-404. [15] Bao F, Vollmers H,Mattner H.Experimental study on controlling wake vortex in water towing tank[C]//Proceedings of 20th International Congress on Instrumentation in Aerospace Simulation Facilities.Piscataway,NJ:IEEE Press,2003:214-223. [16] 黄烁桥,申功忻, Robert Konrath,等.喷流对飞机尾流涡影响的试验研究[J].航空学报,2010,31(5):899-908. Huang S Q,Shen G X,Konrath R,et al.Experimental investigation of influence of jets on aircraft wake vortices[J].Acta Aeronautica et Astronautica Sinica,2010,31(5):899-908(in Chinese). [17] Urbatzka E, Wilken D.Estimating runway capacities of German airports[J].Transportation Planning Technology,1997,20(2):103-129. [18] Fabre D, Jacquin L.Stability of a four-vortex aircraft wake model[J].Physics of Fluids,2000,12(10):2438-2443. [19] Rennich S C, Lelet S K.Method for accelerating the destruction of aircraft wake vortices[J].Journal of Aircraft,1999,36(2):398-404. [20] Ortega J M, Bristol R L,Savas Ö.Experimental study of the instability of unequal-strength counter-rotating vortex pairs[J].Journal of Fluid Mechanics,2003,474:35-84. [21] Babie B M, Nelson R C.An experimental investigation of bending wave instability modes in a generic four-vortex wake[J].Physics of Fluids,2010,22(7):1-15. [22] Quackenbush T R, Boschitsch A H,Bilanin A J.Computational and experimental studies in multipair wake vortex instabilities,AIAA-2013-3190[R].Reston:AIAA,2013. [23] Jacquin L, Fabre D,Sipp D,et al.Instability and unsteadiness of aircraft wake vortices[J].Aerospace Science and Technology,2003,7(8):577-593. [24] 刘志荣,朱睿. 双翼尖涡Rayleigh-Ludwieg不稳定性实验研究[J].实验流体力学,2013,27(2):24-30. Liu Z R,Zhu R.Dual wingtips vortexes Rayleigh-Ludwieg instability experimental research[J].Journal of Experiments in Fluid Mechanics 2013,27(2):24-30(in Chinese). [25] He Y, Yang J W,Bao F.Wake vortex control using modified flaps[J].Applied Mechanics and Materials,2013,365:827-834.
点击查看大图
计量
- 文章访问数: 731
- HTML全文浏览量: 75
- PDF下载量: 467
- 被引次数: 0